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Abstract Advancements of information, communication and location-aware technolo-

gies have made collections of various passively generated datasets possible. These datasets

provide new opportunities to understand human mobility patterns at a low cost and large

scale. This study presents a home-based approach to understanding human mobility pat-

terns based on a large mobile phone location dataset from Shenzhen, China. First, we

estimate each individual’s ‘‘home’’ anchor point, and a modified standard distance (S0D) is

proposed to measure the spread of each individual’s activity space centered at this ‘‘home’’

anchor point. We then derive aggregate mobility patterns at mobile phone tower level to

describe the distance distribution of S0D for people who share the same ‘‘home’’ anchor

point. A hierarchical clustering algorithm is performed and the spatial distributions of the
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derived clusters are analyzed to highlight areas with similar aggregate human mobility

patterns. The results suggest that 43 % of the population sample travelled within a short

distance (S0D � 1 km) during the 13-day study period while 23.9 % of them were associated

with a large activity space (S0D � 5 km). The geographical differences of people’s mobility

patterns in Shenzhen are evident. Areas with a large proportion of people who have a small

activity space mainly locate in the northern part of Shenzhen such as Baoan and Longgang

districts. In the southern part where the economy is highly developed, the percentage of

people with a larger activity space is higher in general. The findings could offer useful

implications on policy and decision making. The proposed approach can also be used in

other studies involving similar spatiotemporal datasets for travel behavior and policy

analysis.

Keywords Passive mobile phone location data � Human mobility � Activity space �
Home-based approach

Introduction

Understanding human mobility patterns has been an important topic in transportation

research. Traditional studies rely heavily on travel surveys and questionnaires to analyze

people’s movements and activities (Levinson and Kumar 1995; Dijst 1999; Axhausen et al.

2002; Schönfelder and Axhausen 2003). Such datasets usually consist of detailed infor-

mation of respondents as well as the trips they made that can facilitate analysis of human

travel and activity patterns. However, collection of such datasets can be costly and time-

consuming and the sample size is constrained by the human and financial resources

available. Recent advancements in location-aware technologies have provided many pas-

sively generated datasets for understanding the whereabouts of people in space and time.

These datasets refer to a set of data that are passively generated only when particular kinds

of human activities occur (e.g., cell phone usage, credit card transaction and check-in of

social networks). Mobile phone location data, as one example of such datasets, ‘‘enables

the study of human mobility at low cost and on an unprecedented scale’’ (Becker et al.

2013, p. 74). These large-scale anonymized datasets have introduced new opportunities to

investigate various aspects of human dynamics from individual activity patterns to col-

lective behavior of the masses (Candia et al. 2008).

In recent years, there have been many studies which used mobile phone location data to

understand people’s travel and activity patterns as well as the implications to transportation

planning, urban design and social dynamics (Ahas et al. 2007; Candia et al. 2008; Gon-

zalez et al. 2008; Phithakkitnukoon et al. 2010; Song et al. 2010; Cho et al. 2011; Yuan

et al. 2012; Becker et al. 2013). Most of them utilized passive mobile phone location data,

which is a by-product of business operations of mobile phone companies. Such datasets

often contain information about when and where different types of mobile phone activities

are conducted (e.g., mobile phone calls, text messages, and location-based services).

Unlike traditional travel surveys, these passively generated datasets fall short of collecting

individual socioeconomic and demographic information for travel behavior and policy

analysis. Moreover, individuals’ location records don’t explicitly reflect their travel pur-

poses. Hence, novel approaches are needed when using such datasets for a better under-

standing of human mobility patterns and related transportation problems.
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As suggested by Schönfelder and Axhausen (2003), an individual’s home location

should be treated as important anchor point when analyzing how people move around in

their daily lives. Understanding how people move around their home locations could yield

novel insights into people’s mobility patterns. Moreover, a good understanding of people’s

use of space around their home locations could potentially benefit urban planning and

public transport design around different neighborhoods in a city. Although passive mobile

phone location data can be sparse in both space and time, it serves as a valuable data source

for uncovering individual activity anchor points such as home locations, and people’s use

of space around these locations. Hence, this study proposes a home-based approach to

studying human mobility patterns using a passive mobile phone location dataset. The main

contributions of this research are as follows:

(1) With the use of a 13-day mobile phone location dataset covering more than 1 million

people in the city of Shenzhen, China, we estimate each individual’s ‘‘home’’ anchor

point (which corresponds to a particular mobile phone tower) and use it as the

reference point of an individual’s mobility pattern. We propose a modified standard

distance (S0D) to quantify the spread of each individual’s daily activities centered at

the ‘‘home’’ anchor point. Individuals are then grouped based on the locations of

their reference points. We then derive aggregate mobility patterns for each mobile

phone tower to describe how individuals who share the same ‘‘home’’ anchor point

move around in their daily lives.

(2) Based on a multi-level hierarchical agglomerative clustering algorithm, mobile

phone towers are grouped into different clusters based on their aggregate mobility

patterns. Spatial distributions of the derived clusters highlight distinct human

mobility patterns in different areas of the city. We then discuss the socioeconomic

and demographic characteristics of the regions covered by different cluster types to

gain insights of human mobility patterns in a geographical context.

The remainder of the paper is organized as follows. ‘‘Related work’’ section provides a

review of related work of this research. ‘‘Study area and mobile phone location dataset’’

section introduces the mobile phone location dataset and the study area. ‘‘Methodology’’

section describes the methods used in this study to derive reference points of individual

activity space and to analyze aggregate human mobility patterns. ‘‘Analysis results and

discussion’’ section discusses the analysis results. We summarize our findings and discuss

future research directions in ‘‘Conclusion’’ section.

Related work

This section provides a brief review of selected studies related to the understanding of

human mobility patterns, urban dynamics, individual activity anchor points using different

types of tracking datasets (e.g., travel survey, GPS and mobile phone location data).

Understanding human mobility patterns

Understanding human travel and activity patterns has always been an interest in trans-

portation research. Before mobile technologies pervaded, travel surveys were often used in

activity-based studies. Inspired by the time geography framework proposed by Häger-

straand (1970), many studies have used travel surveys to understand how people perform
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their daily activities that are shaped by various types of constraints. These studies covered

many important subjects such as multi-purpose and individual trip chaining behavior

(Hanson 1980; Kitamura 1984; Newsome et al. 1998), social roles in travel behavior

(Hanson and Hanson 1980; Kwan 1999), impacts of information and communications

technologies on human travel (Mokhtarian 1998, 2003; Couclelis 2004), and human ac-

tivity analysis in the space–time GIS framework (Kwan 2000; Miller 2005; Yu and Shaw

2008; Shaw et al. 2008; Shaw and Yu 2009; Chen et al. 2011; Yin et al. 2011). One

important concept related to the understanding of human mobility patterns is individual

activity space. Activity space denotes the daily environment that an individual is using for

his/her activities (Golledge and Stimson 1997). There are several related concepts such as

awareness space (Brown and Moore 1970), action space (Horton and Reynolds 1971),

perceptual space (Relph 1976) and mental maps (Lynch 1984). In general, an individual’s

activity space is usually conceptualized as the locations that have been visited as well as

the travel among these locations (Schönfelder and Axhausen 2003). As people’s daily

activities usually occur at a few locations such as home and workplaces, these locations are

often considered as anchor points (Cullen and Godson 1975; Golledge and Stimson 1997)

that determine the major characteristics of individual activity space. In order to describe

people’s daily activity patterns, considerable focus has been placed on measuring the size,

geometry and structure of human activity space. For example, Dijst (1999) proposed a

model with several discriminant functions to measure the size and shape of individual

action space. Schönfelder and Axhausen (2003, 2004) used three measurement approaches

(confidence ellipse, kernel density estimates and minimum spanning tree) to describe the

structures of people’s activity spaces based on travel surveys and GPS tracking datasets.

These measures can effectively describe human mobility patterns from different per-

spectives. However, measures like confidence ellipse often consider the arithmetic mean of

individual activity locations as the center of activity space when measuring the spatial

dispersion of visited locations. Schönfelder and Axhausen (2003) suggested that indi-

viduals’ activity anchor points, such as home locations, should be used to substitute the

arithmetic mean to ‘‘gain a behaviorally more realist measure’’ (p. 9) on human mobility

patterns. This inspires us to study how people move around in their daily lives by con-

sidering their home as a key reference point.

The wide adoption of location-aware technologies such as mobile phone positioning,

GPS and Wi-Fi have opened up new opportunities to study the whereabouts of people in

space and time. Rhee et al. (2011) analyzed individual movements based on GPS trajec-

tories and the study showed that human travel behavior could be described mathematically

by levy-walk model. Gonzalez et al. (2008) and Song et al. (2010) conducted their studies

based on long-term mobile phone location data and concluded that a high degree of

spatiotemporal regularities existed in human movements. Kang et al. (2010) studied in-

dividual human mobility patterns among different groups divided by gender and age. Yuan

et al. (2012) included other indicators such as mobile phone usage and transportation

network densities to study how they impacted human mobility patterns. These studies yield

insights into important aspects of human activity patterns. However, few of them have

attempted to characterize human mobility patterns by considering important anchor points

(e.g., home locations) of people’s daily activities. Moreover, little has been discussed in

terms of how people’s mobility patterns vary geographically, which serves as important

information in decision and policy making. With this in mind, our study proposes a home-

based approach to studying human mobility patterns within the context of their residential

locations. The proposed measure is intended to provide an intuitive way of describing the
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general characteristics of human activity spaces and shed light on how people move around

in a geographical context.

Understanding urban dynamics using GPS and mobile phone location data

As Batty (2009, p. 51) pointed out in his paper, urban dynamics refers to ‘‘representations

of changes in urban spatial structure through time which embody a myriad of processes at

work in cities of different, but often interlocking, time scales ranging from life cycle

effects in buildings and populations to movements over space and time as reflected in

spatial interactions’’. It is apparent that human travels and activities play an important role

in the manifestation of the dynamics of our cities. The Global Positioning System (GPS)

has become widely adopted in studies for understanding various aspects of urban dynamics

such as individual commuting patterns (Shen et al. 2013), route choice behavior (Li et al.

2005; Papinski et al. 2009) and spread of disease (Vazquez-Prokopec et al. 2009). Because

of its capability to capture human movements with high spatiotemporal accuracy

(Richardson et al. 2013), GPS data have been accepted as a valuable source that can help

enhance our understanding of human mobility and activity patterns in urban settings

(Quiroga and Bullock 1998; Bohte and Maat 2009; Bazzani et al. 2010; Shoval et al. 2011).

As an emerging technique, mobile phone positioning has become a useful way to

capture human movements and activities in space and time. Much research has been done

to understand various aspects of urban dynamics based on mobile phone location data. In

the Real Time Rome project by MIT SENSEable City Lab, large scale anonymous cellular

network data was leveraged along with instantaneous positioning of taxis and buses to

portray the picture of urban mobility in real time (Calabrese and Ratti 2006; Calabrese

et al. 2011). Pulselli et al. (2005, 2006) and Ratti et al. (2006) used mobile phone location

data in Milan, Italy to study intensities of human activities and their changes over space

and time. Several studies used mobile positioning data to study recurring patterns and daily

rhythms of human movements and activities (Reades et al. 2009; Ahas et al. 2010a;

Sevtsuk and Ratti 2010). In addition, mobile positioning and GPS data were used for other

purposes in urban studies such as tourism analysis (Ahas et al. 2007), traffic state

monitoring (Sohn and Hwang 2008), epidemiology (Tatem et al. 2009) and location rec-

ommendation (Zheng et al. 2009). In our study, we investigate human mobility patterns

using a home-based approach, which can enhance our understanding of people’s use of

space and shed light on urban dynamics.

Identifying individual activity anchor points

Human beings often spend a significant amount of time at specific places such as home and

work locations. These key activity locations serve as important anchor points in people’s

everyday lives. Individual mobility patterns could be largely explained by the travel ac-

tivities that occurred around these locations. Since the late 1990s, the GPS has become a

popular means of collecting tracking data for studying human travel and activity patterns.

Various approaches have been applied to derive trips and important locations from indi-

vidual GPS trajectories. For example, Wolf et al. (2001, 2004) used GPS to collect travel

data and developed several approaches to identifying trip destinations and purposes.

Schuessler and Axhausen (2009) developed methods to derive individual trips and ac-

tivities from GPS data. The analysis results in these studies were compared with travel

diaries and demonstrated the feasibility of using GPS for understanding of individual

activity patterns. Ashbrook and Starner (2003) and Zhou et al. (2007) developed algorithms

Transportation (2015) 42:625–646 629

123



to cluster GPS data points into individual activity anchor points. These studies benefited

studies of human mobility patterns by uncovering their daily meaningful locations.

However, GPS logs pose additional burdens on users and often suffer from problems such

as signal loss (urban canyon effect) and short battery life. Mobile phones, on the other

hand, become indispensable in people’s daily life and various tracking techniques deployed

on the devices (GSM and Wi-Fi) make it possible to collect locations of large population in

space and time. Nurmi and Koolwaaij (2006) developed four different algorithms (graph

clustering, online variant of graph clustering, spectral clustering and duration-based

clustering) to derive semantics of individuals’ frequently visited locations based on in-

formation of GSM cell transitions enriched GPS data. Ahas et al. (2010b) used a passive

mobile positioning dataset which covers more than half million anonymous respondents in

Estonia to extract individuals’ personally meaningful locations, which ‘‘offers good po-

tential for the monitoring of the geography and mobility of population’’ (p. 3). This study

takes the advantage of rich information embedded in mobile phone location data to ex-

amine how people move around under the context of key activity locations.

Study area and mobile phone location dataset

The study area of this research is the city of Shenzhen, China. Shenzhen is located in

southern China (Fig. 1a) and across the border from Hong Kong (Fig. 1b). Shenzhen is

China’s first special economic zone (SEZ) and covers an area of 1952 km2. The city has six

administrative districts: Baoan, Longgang, Nanshan, Futian, Luohu and Yantian (Fig. 1c).

As one of southern China’s financial centers, Shenzhen’s population has been growing

rapidly during recent years. The urbanization process and the rapid economic growth have

attracted many immigrant workers who seek job opportunities in Shenzhen. By the end of

2011, the immigrant population accounts for more than 70 % of the total population in the

city (see Gazette of the People’s Government of Shenzhen Municipality 2011). The unique

socioeconomic and demographic status of Shenzhen makes it an interesting area for the

study of human mobility patterns.

The mobile phone location data used in this study was collected as call detail records1

(CDRs) and each location record was generated when a mobile phone user placed or

received a phone call/text message. Since such passively generated mobile phone data can

be sparse in time, in this study we included 1,219,198 individuals covering a time span of

13 days with a criterion that each individual had at least 5 days with mobile phone location

records. For privacy protection, this study did not obtain any personal information and each

phone user in the dataset was assigned with an arbitrary user ID. In addition, all mobile

phone location data were collected at the mobile phone tower level such that the specific

activity locations are not revealed. As shown in Table 1, whenever an individual made or

received a phone call or text message, a mobile phone record was generated including the

user ID, date, starting time of mobile phone activity, record type (e.g., phone call vs. text

message), and the coordinates (latitude/longitude) of the mobile phone tower which han-

dled the mobile transaction. The density of mobile phone towers could vary in different

1 There have been a number of publications (Phithakkitnukoon et al. 2010; Song et al. 2010; Yuan et al
2012; Yuan and Raubal 2012; Becker et al. 2013) that used mobile phone location datasets for studying
human mobility patterns. The mobile phone location dataset used in this study was acquired through
research collaboration with Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences and
the research was approved through an Institutional Review Board (IRB) process.
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parts of the study area. In this dataset, the average size of service area covered by a mobile

phone tower is 0.67 km2. Figure 2 shows the geographic distribution of all mobile phone

towers included in this study. For each tower, the corresponding Thiessen Polygon is used

to denote its service area.

Methodology

In this study, we propose a home-based approach to understanding aggregate human

mobility patterns based on the mobile phone location dataset. First, we estimate each

individual’s ‘‘home’’ anchor point by analyzing his/her mobile phone location records. A

modified standard distance measure is proposed to describe the spread of each individual’s

daily activities centered at the ‘‘home’’ anchor point during the study period. Then, each

individual’s estimated ‘‘home’’ anchor point is used as a reference point and individuals are

grouped together based on the locations of their corresponding reference points. We derive

aggregate mobility patterns to describe how individuals who share the same reference point

move around during the study period. Finally, a multi-level hierarchical agglomerative

Fig. 1 a Shenzhen’s location in China; b Relative locations of Shenzhen and Hong Kong (from Google
Maps); c Shenzhen’s administrative districts
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clustering algorithm is used to group the areas with similar aggregate mobility patterns into

clusters. Spatial distributions of the derived clusters are then analyzed to highlight areas

with distinctive aggregate mobility patterns.

Estimate individual ‘‘home’’ anchor point

Places such as home and work locations serve as important anchor points of people’s daily

activities. This information can be acquired from travel surveys and have been used as

important reference points when analyzing human activity patterns. As residential loca-

tions are not explicitly given in the anonymous mobile phone location dataset, we estimate

each individual’s ‘‘home’’ anchor point by analyzing his/her mobile phone location

records. The purpose is not to pinpoint an individual’s residential location, but to provide a

way of measuring the spread of each individual’s daily activities. Moreover, these refer-

ence points can be used as reasonable estimates of individual home locations to further

investigate geographic disparities of people’s travel and activity patterns.

In this study, we apply an algorithm similar to Ahas et al. (2010b) to estimate individual

‘‘home’’ anchor points. For each individual in the dataset, we first compute the number of

Table 1 Example of an individual user’s mobile phone records during the data collection period

User ID Date Starting time Record type Latitude Longitude

932******** Day 1 23:02:43 Call 22.***** 113.*****

932******** Day 1 23:11:56 Call 22.***** 113.*****

932******** Day 2 10:58:47 Message 22.***** 113.*****

… … … … 22.***** 113.*****

932******** Day 13 09:22:50 Message 22.***** 113.*****

Fig. 2 Spatial distribution of mobile phone towers in Shenzhen (2976 in total). For each tower, the
corresponding Thiessen Polygon is used to denote its service area
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days the individual has at least one record at each mobile phone tower. We then choose the

top two mobile phone towers with the highest number of days as the candidate towers. The

algorithm is based on an assumption that, although many people may not have many mobile

phone records at the home location each day, most of them would have some mobile phone

uses at the home location on a regular basis. Using the number of days with at least one record

rather than the absolute number of phone records during the study period could eliminate

popular locations of mobile phone usage such as transportation hubs, restaurants, and

shopping malls. Finally, for each of the two candidate towers, we calculate the total number

of mobile phone records during the study period and the number of mobile phone records

occurred during non-work time (before 6:00 and after 18:00). The tower with higher per-

centage of records during non-work time is identified as the ‘‘home’’ anchor point.

Calculate modified standard distance

Different measures such as standard distance (Bachi 1962) and radius of gyration (Gon-

zalez et al. 2008; Song et al. 2010) have been applied in activity-based research to describe

the spread of individual activity space. These measures use the arithmetic mean (center of

gravity) of each individual’s activity locations as reference point. For example, the stan-

dard distance of an individual’s activity space is calculated as:

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 xi � xcð Þ2

n
þ
Pn

i¼1 yi � ycð Þ2

n

s

ð1Þ

where xi and yi(i = 1, 2, …, n) denote the coordinates of an individual’s sampled activity

locations. xc and yc stand for the coordinates of the arithmetic mean location.

In this study, we propose a modified standard distance to measure the spread of each

individual’s activity space centered at his/her estimated ‘‘home’’ anchor point. For a

particular individual in the dataset, the modified standard distance is calculated as follows:

S0D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 xi � xhð Þ2

n
þ
Pn

i¼1 yi � yhð Þ2

n

s

ð2Þ

where n denotes the total number of mobile phone records for the individual. xi and

yi(i = 1, 2, …, n) denote the coordinates of the ith mobile phone record. xh and yh are the

coordinates of the individual’s estimated ‘‘home’’ anchor point. The modified standard

distance is used to reflect the spread of an individual’s activities centered around the

‘‘home’’ anchor point. Individuals with most of their activities distributed in the vicinity of

their homes tend to have smaller S0D than the people whose activities are more widely

spread.

Derive aggregate mobility patterns for mobile phone towers

After extracting each individual’s ‘‘home’’ anchor point and modified standard distance,

we group individuals based on the mobile phone tower that represents the location of their

estimated ‘‘home’’ anchor point. We then analyze the aggregate mobility pattern for each

mobile phone tower to distinguish the mobility patterns of people in different geographic

locations of the study area.

The aggregate mobility pattern of a mobile phone tower is measured by the modified

standard distances (S0D) of the corresponding individuals. As the modified standard distance
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may vary significantly from person to person, using measures such as arithmetic mean may

not properly reflect the characteristics of people’s mobility patterns. We therefore first

group the values of S0D into m classes. Each class Diði ¼ 1; 2; . . .mÞ corresponds to a

particular range of S0D. The aggregate mobility pattern for a particular mobile phone tower

T then can be represented as a vector V, which consists of the percentages of individuals

with their S0D falling in each of the Diði ¼ 1; 2; . . .mÞ classes:

V ¼ q1; q2; . . .; qmð Þ ð3Þ

where qiði ¼ 1; 2; . . .mÞ is calculated as:

qi ¼
Ni

N
� 100 % ð4Þ

where N denotes the total number of individuals with their ‘‘home’’ anchor point at mobile

phone tower T. While Niði ¼ 1; 2; . . .mÞ denotes the number of individuals with their S0D
falling in the class of Di(i = 1, 2, … m). Note that:

X

m

i¼1

Ni ¼ N ð5Þ

X

m

i¼1

qi ¼ 1 ð6Þ

The vector V is useful to distinguish the varying activity patterns of people at different

locations in the study area. For example, the mobility pattern of people who live in urban

centers may be different from people who live in suburban areas and could show two

vectors with different characteristics.

Clustering of mobile phone towers based on aggregate mobility patterns

Clustering multi-dimensional data can be challenging because of computational intensity

and outliers. This study uses the agglomerative hierarchical clustering method with average

linkage to group mobile phone towers into clusters (Han et al. 2011). Each cluster contains

one vector initially. As shown in Eq. (7), the distance I between any two vectors

Vðq1; q2; . . .; qmÞ and V 0ðq01; q02; . . .; q0mÞ is calculated based on the Euclidean distance

measure. The similarity index between any two clusters is thus calculated as the average

value of distance I between vectors from the first cluster and the vectors from the second

cluster. At each step, two clusters with the smallest similarity index are merged into a new

cluster. The clustering process terminates when it reaches the specified number of clusters.

I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

i¼1

qi � q
0
ið Þ2

s

ð7Þ

As the multidimensionality of the vectors is likely to cause the agglomerative hierarchical

method to generate several small clusters with unique patterns, these outlier clusters need to

be addressed during the clustering process. We adopt a multi-level clustering algorithm

similar to Chen et al. (2011) to remove the outlier clusters during each iteration of the

agglomerative hierarchical clustering method. As the clustering process progresses, outlier

clusters are removed step by step and clusters with distinctive characteristics start to emerge.
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Analysis results and discussion

This section first presents the estimation of individual ‘‘home’’ anchor points and their

geographic distributions in the study area. Next, the modified standard distance S0D is

calculated for each individual and the distribution of S0D for 1,219,198 individuals in the

dataset is presented to provide an overview of the spread of people’s activity space. We

then group individuals based on their ‘‘home’’ anchor points at respective mobile phone

towers to find the aggregate mobility pattern of each mobile phone tower using the

method discussed in ‘‘Derive aggregate mobility patterns for mobile phone towers’’

section. A hierarchical clustering algorithm is subsequently performed to identify clusters

of mobile phone towers that share similar aggregate mobility patterns based on the

method described in ‘‘Clustering of mobile phone towers based on aggregate mobility

patterns’’ section. Spatial distributions of the derived clusters of mobile phone towers are

finally mapped to highlight areas with distinctive aggregate human mobility patterns in

Shenzhen.

Estimation of individual ‘‘home’’ anchor point

We estimate each individual’s ‘‘home’’ anchor point and use it as the reference point when

measuring the spread of an individual’s activity space. Figure 3 shows the density of

estimated ‘‘home’’ anchor points of all 1,219,198 individuals in the dataset. Polygons with

darker colors denote the mobile phone tower service areas with higher densities of anchor

points. It can be perceived that many polygons with dark colors distribute in the southwest

part, which refer to populated areas in Shenzhen. In this study, the estimated ‘‘home’’

anchor points are used to group individuals in space and derive aggregate human mobility

patterns discussed below.

Fig. 3 Density of estimated ‘‘home’’ anchor points by mobile phone tower service area

Transportation (2015) 42:625–646 635

123



Distribution of individual modified standard distance

With each individual’s ‘‘home’’ anchor point, we compute the modified standard distance

S0D to examine the spread of individual activity space centered at the ‘‘home’’ anchor point.

Figure 4 shows the distribution of S0D for all 1,219,198 individuals in the dataset. The

inserted histogram of individual S0D (binwidth ¼ 0:2 km) indicates that a large percentage

of the individuals has a low value of S0D. The histogram has its peak S0D at 0.4–0.6 km,

while the long tail suggests that some people have a large activity space.

The cumulative distribution in Fig. 4 shows that 43 % of the individual S0D are within

1 km and 58.3 % the individual S0D are within 2 km. On the other hand, 23.9 % individual

S0D are beyond 5 km. These statistics indicate that most people in Shenzhen have a

relatively small activity space around their ‘‘home’’ anchor location during the 13-day

study period. This encourages us to further explore the geographic landscape of people’s

mobility patterns.

Clustering patterns of mobile phone towers

Individuals are grouped based on their estimated ‘‘home’’ anchor points to derive aggregate

mobility patterns by respective mobile phone towers. As mentioned in ‘‘Methodology’’

section, we divide S0D into several classes and apply Eqs. (3) and (4) to measure the

aggregate characteristics of human mobility patterns. According to the distribution of S0D
shown in Fig. 4, we divide the values of S0D into the following 6 classes:

(1) D1: 0� S
0
D\1 km

(2) D2: 1 km� S
0

D\2 km

(3) D3: 2 km� S
0
D\3 km

(4) D4: 3 km� S
0
D\4 km

Fig. 4 Distribution of modified standard distance (S0D) for 1,219,198 individuals in the dataset
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(5) D5: 4 km� S
0

D\5 km

(6) D6: S
0
D � 5 km

By doing so, the aggregate mobility pattern of each mobile phone tower is represented

as a vector V(q1; q2; . . .; q6Þ recording the percentage of individuals with their S0D falling in

each of the classes ðD1;D2; . . .;D6Þ. Table 2 gives an example of vectors for 5 randomly

selected mobile phone towers. For example, the first element (q1) of mobile phone tower 1

(T1) denotes that for all individuals with their ‘‘home’’ anchor point at T1, 27.78 % of them

have a S0D within [0,1 km). The vectors can distinguish different aggregate mobility pat-

terns associated with various mobile phone towers. For example, for T1, 42.59 % of the

individuals have a S0D equal or larger than 5 km. This number drops to 17.00 % when we

look at T5, where a large proportion of individuals exhibited low value of S0D.

This study performs a multi-level hierarchical agglomerative clustering algorithm on

2976 mobile phone towers in Shenzhen that groups 2634 mobile phone towers into 9

clusters. The remaining 342 mobile phone towers are not grouped into any cluster either

because they are removed as outliers during the clustering process or there is no ‘‘home’’

anchor point detected at those locations. Table 3 shows the clustering result of these

mobile phone towers. The average percentages of V(q1; q2; . . .; q6Þ for each cluster as well

as the average percentages of V(q1; q2; . . .; q6Þ for all 2976 mobile phone towers are

computed for comparison purpose. The results clearly indicate distinctive characteristics of

each cluster type. For example, for mobile phone towers in C3, a large percentage of

people’s S0D are smaller than 1 km (q1 = 60.16 %). Mobile phone towers in C8, on the

other hand, have most people with S0D at or larger than 5 km (q6 = 92.38 %).

Figure 5 plots the results of these nine clusters in Table 3 to show their distinct patterns.

Blue line with square markers in each plot represents the average percentages of

V(q1; q2; . . .; q6Þ for each cluster and red line with round markers denotes the average

percentages of V(q1; q2; . . .; q6Þ for all 2976 mobile phone towers. It is evident that, for

mobile phone towers in C1, the percentage of people with S0D � 1 km (q1 = 27.75 %) is

lower than the overall average (43 %) while the percentage of people with S0D � 5 km

(q6 = 33.84 %) is higher than the overall average (23.9 %). C2 has a pattern almost

identical to the overall average. C3 is above the overall average of q1 and below the overall

average of q6. C4 and C5 have dual peaks at q2 and q6 while having q1 below the overall

average. C6, C7, C8 and C9 represent the mobile phone towers with a large proportion of

people having S0D � 5 km and a low percentage of people having S0D\1 km. The next

section further explores the spatial distributions of these clusters to better understand

people’s mobility patterns in a geographical context.

Table 2 Vectors representing the aggregate mobility patterns of 5 randomly selected mobile phone towers

Mobile phone tower ID q1 (%) q2 (%) q3 (%) q4 (%) q5 (%) q6 (%)

T1 27.78 8.56 7.34 6.48 7.22 42.59

T2 42.46 13.51 8.49 6.58 5.71 23.22

T3 40.31 12.53 9.90 7.01 4.11 26.11

T4 38.72 11.08 8.91 6.21 6.74 28.31

T5 49.58 13.79 8.79 5.82 4.99 17.00

… … … … … … …
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Spatial distributions of clusters with different aggregate human mobility
patterns

Spatial distributions of the above 9 clusters are mapped to further examine aggregate

human mobility patterns in Shenzhen. To make the maps easier to understand, each of the

maps shows the cluster(s) of similar aggregate mobility patterns. Figure 6 presents the

spatial distribution of C1 with the locations of mobile phone towers represented by their

service areas (i.e., Thiessen polygons in Fig. 2). C1, which refers to the mobile phone

towers with only 27.75 % of people with S0D � 1 km and the percentage of people with

S0D � 5 km is 33.84 %, mainly covers areas in the southern part of Shenzhen, with most of

the mobile phone towers located in Nanshan, Futian and Luohu districts. Futian and Luohu

are two major business districts where many financial and business centers are located.

Nanshan, which has the highest per capita GDP among the six administrative districts in

recent years, is a district with many universities and high-tech companies. In general, the

economy of southern part of Shenzhen is more advanced than that of the northern part. The

spatial distribution of C1 suggests that regional differences in economic development

could be a potential factor affecting people’s daily activity patterns in Shenzhen.

Compared with other clusters, C2 and C3 cover the areas where large proportion of

people travelled within short distances during the study period. C2 has 44.3 % of people

with S0D � 1 km and C3 has 60.16 % of people with S0D � 1 km. The percentage of people

with S0D � 5 km in C2 and C3 (21.89 and 13.61 % respectively) is lower than the overall

average. Figure 7 shows the spatial distributions of C2 and C3, which cover mainly the

northern part of Shenzhen in Baoan and Longgang districts. Baoan and Longgang are two

industrial districts with many immigrant workers. In order to better understand the geo-

graphical context of these areas, we also display the major factories in Shenzhen in Fig. 7.

We can see that the areas covered by C2 and C3 are generally co-located with the factories

in Baoan and Longgang districts. Many factories in Shenzhen provide workers with dor-

mitories adjacent to their workplace. In addition, many immigrant workers tend to rent

apartments near their workplace to save commuting time and cost. We believe the low

Table 3 Clustering results of 2976 mobile phone towers in the dataset

Cluster type Cluster size Average percentages of vector for each cluster

q1 (%) q2 (%) q3 (%) q4 (%) q5 (%) q6 (%)

C1 617 27.75 14.4 9.57 7.74 6.71 33.84

C2 951 44.3 16.39 7.68 5.45 4.29 21.89

C3 496 60.16 14.27 5.51 3.69 2.75 13.61

C4 51 28.65 31.66 10.81 4.93 3.41 20.54

C5 28 15.75 26.14 8.49 9.32 6.55 33.74

C6 81 7.05 6.57 4.15 6.01 6.77 69.45

C7 165 15.6 11.86 9.08 7.24 7 49.22

C8 227 0.27 0.47 1.06 2.14 3.67 92.38

C9 18 7.11 4.56 16.31 3.78 6.93 61.3

Others 342 – – – – – –

Overall 2976 43 15.3 7.6 5.6 4.6 23.9
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level of S0D in these areas could be partially explained by the daily activity patterns of many

immigrant workers in these areas of Shenzhen. There are two interesting findings worth

noting here: (1) some areas in C2 are located around the boundary between Futian and

Luohu districts. It indicates that a large proportion of people in these economically de-

veloped areas also have a relatively small activity space; (2) some areas in C2 and C3 (e.g.,

southwestern part of Baoan and western part of Longgang) fall along the major subway

lines of Shenzhen. Yet people in these areas still experience less mobility.

C6, C7, C8 and C9 cover the areas with a large percentage of people with S0D � 5 km.

Figure 8 shows the spatial distributions of these four clusters. C6, C7 and C9 mainly locate

in Nanshan, Yantian and some areas in southeast Longgang. The areas covered by C8

mainly locate in southeast Baoan. Table 3 shows that the percentage of people with

S0D � 5 km for C8 is approaching 100 %. Displaying these clusters on Google Map shows

that the major part of C8 is located in a geographically isolated area surrounded by

mountains. Also, a large transportation hub (Shenzhen North Station) is located in this area,
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Fig. 5 Clustering patterns of the mobile phone towers. Blue lines with square markers represent the
average percentages of vector for each cluster and red lines with round markers denote the average
percentages of vector of all 2976 mobile phone towers as shown in Table 3. (Color figure online)
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which offers transfer services to all kinds of transportation modes such as subway, taxi, bus,

among others. Moreover, many inter-city highways such as Longda highway, Meiguan

highway and Fulong expressway all go through this area. It should be noted that most areas

covered by these four clusters are not highly populated areas in Shenzhen. One possible

explanation to the observed spatial pattern is that these areas may have few job opportunities

that force people to travel longer distances than people in other parts of Shenzhen. We also

investigate the geographic distributions of C4, C5 as well as the outliers. Most areas covered

by C4 are located in Baoan and Longgang districts while the areas covered by C5 and the

outliers scatter across different districts. It appears that these clusters require additional

research to identify possible causes to their spatial distribution patterns.

Fig. 6 Spatial distribution of mobile phone tower service areas in C1

Fig. 7 Spatial distributions of C2 and C3 and major factories in Shenzhen
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Major characteristics of the clusters derived from this study and their spatial distribu-

tions reveal several interesting aspects of human mobility in Shenzhen. For example,

people who live around places with industrial parks and factories tend to have smaller

activity space than people in other areas. One can also observe the differences of aggregate

human mobility patterns between the northern and southern parts, as indicated by Figs. 6

and 7 respectively. The geographic differences are generally in accordance with the socio-

economic divide in Shenzhen. The research findings suggest that aggregate human mo-

bility patterns derived from mobile phone location data could serve as useful indicators for

the underlying socio-demographics and land use patterns. Note that several studies have

used mobile phone location data for automated land use identification (Soto and Frı́as-

Martı́nez 2011; Toole et al. 2012; Pei et al. 2014) and the prediction of socioeconomic

levels (Soto et al. 2011). The analysis results in our study yield some novel insights into

people’s mobility patterns in Shenzhen, and serve as an initial effort for us to understand

how people use urban space and its relationship with the built environment.

Conclusion

The proliferation of location-aware technologies has created many passively generated

datasets that track the whereabouts of people in space and time. Unlike survey or interview

datasets, passively generated datasets do not explicitly report every trip and destination of

the respondents during a certain time period. The snapshots of people’s daily traces in-

cluded in these emerging datasets encourage novel approaches for studies of human travel

and activity patterns. This paper introduces a home-based approach to understanding hu-

man mobility patterns based on passive mobile phone location data. The approach con-

siders home location as an important reference point when analyzing people’s use of space.

The modified standard distance is introduced to describe the spread of an individual’s

activity space around the home location. Individuals are then grouped in space based on

their estimated home locations to derive aggregate mobility patterns at each mobile phone

Fig. 8 Spatial distributions of C6, C7, C8 and C9
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tower. A multi-level hierarchical clustering algorithm is performed to group areas with

similar aggregate mobility patterns into clusters. The study provides a unique perspective

of examining people’s use of urban space with respect to his/her residential location, and

complement the behavioral insights (e.g., multi-purpose, trip chaining and route choice

behavior) gained from travel surveys and GPS data.

A case study using CDRs of more than 1 million mobile phones over a 13-day period

collected in Shenzhen, China is carried out to test the proposed approach and methods. The

results of this case study clearly indicate the major characteristics of aggregate mobility

patterns at individual mobile phone towers. The methods also identify clusters of mobile

phone towers that share similar aggregate mobility patterns. Mapping the service areas of

these clusters of mobile phone towers help shed light on the geographic differences of

people’s use of space among different parts of Shenzhen. These geographic patterns also

match well with the different economic and transportation characteristics of the six districts

in Shenzhen. Based on the findings, reasonable hypotheses of human travel behavior could

be formulated by considering the socioeconomic and demographic characteristics of the

built environment. The aggregate human mobility patterns derived at the mobile phone

tower level can be further integrated with other datasets with important explanatory

variables for travel behavior and policy analysis.

There are several limitations of this study. First, the passive mobile phone location data

used in this study can be sparse in time since CDRs are created only when a mobile phone

communication occurs. Second, this study removes those individuals who rarely use their

mobile phones during the study period since it is not feasible to reliably estimate their

home anchor point. The analysis results therefore do not reflect activity patterns of people

who rarely use their mobile phones. Nevertheless, the mobile phone location dataset covers

many people over a 13-day period in Shenzhen, China. Although some people may not be

properly represented in this dataset, the analysis results offer useful insights of under-

standing aggregate mobility patterns in a geographic context. It is important to point out

that different data sources (e.g., travel surveys, GPS, and passively generated mobile phone

location data) have their respective strengths and weaknesses for studying human mobility

patterns. The mobile phone location data used in this study is a valuable data source which

could lead to a good understanding of people’s use of space at a very large scale. However,

mobile phone location data do not normally provide individual socioeconomic charac-

teristics (e.g., age, gender, income, etc.) Studies based on mobile phone location data

therefore can serve as a useful first step for more detailed and targeted follow-up studies.

Moreover, while GPS data can capture locations at a finer spatial and temporal granularity

but such data are not available for a large population, it would be promising to combine

GPS-enabled mobile phones with passive mobile phone location data to further explore

human mobility patterns.

In the future, we plan to derive several mobility indices of both spatial and temporal

dimensions to describe people’s mobility patterns in a more comprehensive way, and

further investigate relationships of the derived indices with census (e.g., population den-

sity, gender, income, etc.) and transportation data (e.g., road networks and subway lines).

This will help us better understand the intrinsic characteristics that drive people’s daily

travel and activities. In addition, it would be helpful to apply the same approach to similar

datasets collected in other cities such that we can empirically test the robustness of the

proposed approach and methods. This study demonstrates the potential of using passively

generated mobile phone location data to help us gain better understanding of aggregate

mobility patterns under the geographic context of a city. We believe this is only one of
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many possible ways of using passively generated tracking data to study human dynamics in

a space–time context.
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