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ABSTRACT
Mobile phone location data have been extensively used to understand
human mobility patterns through the employment of mobility indica-
tors. The temporal sampling interval (TSI), which is measured by the
temporal interval between consecutive records, determines how well
such data can describe human activities and influence the values of
human mobility indicators. However, systematic investigations of how
the TSI affects human mobility indicators remain scarce, and charac-
terizing those relationships is a fundamental research question for
many related studies. This study uses a mobile phone location dataset
containing 19,370 intensively sampled individual trajectories
(TSI < 5 minutes) to systematically assess the impacts of the TSI on
four typical mobility indicators that describe human mobility patterns
from different aspects, which are movement entropy, radius of gyra-
tion, eccentricity, and daily travel frequency. We find that different TSIs
have complex impacts on the values of different mobility indicators.
Specifically, (1) coarser TSIs tend to underestimate the values of the
four selected indicators with different degrees; (2) the degrees of
underestimation vary significantly among users for eccentricity and
daily travel frequency but exhibit high inter-user consistency for radius
of gyration and movement entropy. The above findings can help
better understand the variations among human mobility studies.
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1. Introduction

During the last decade, massive mobile phone location data have contributed to human
mobility studies in urban planning, epidemic control, and traffic analysis as well as other
areas (Ratti et al. 2006, Ahas et al. 2007, Wang et al. 2012, Blondel et al. 2015, Mao et al.
2016). Mobility indicators such as movement entropy (Song et al. 2010) and travel
frequency (Çolak et al. 2015) play key roles in these studies. However, because they
are mainly collected for billing and service purposes rather than for research purposes,
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mobile phone location datasets have some quality concerns (e.g. spatiotemporal resolu-
tion, sampling bias) when they are used in human mobility research. Currently, it
remains unclear how these quality concerns in mobile phone location datasets affect
human mobility studies (Goodchild 2013, Liu et al. 2016). This study focuses on the
temporal resolution issue. We note that ‘human mobility’ is a broad concept. Human
mobility patterns contain short-term patterns such as daily travel frequency (e.g. Çolak
et al. 2015) as well as long-term patterns such as monthly variability in human activity
spaces (e.g. Järv et al. 2014). In this study, we focus on the short-term patterns and select
four typical indicators (movement entropy, radius of gyration, eccentricity and daily
travel frequency) to measure human mobility patterns from different perspectives. We
then systematically investigate how the indicator values obtained from mobile phone
location data change with different temporal resolutions.

To investigate the effect of temporal resolution inmobile phone data on humanmobility
indicators, this study introduced the concept of temporal sampling interval (TSI), which is
defined as the temporal interval between pairs of consecutive records, to characterize the
temporal resolution of mobile phone location data. The TSI refers to the inter-event time in
call detail record (CDR) data and the temporal interval between records corresponding to
other types of signals such as periodically updated signals.

Impacts caused by different TSIs on human mobility indicators could refer to the
temporal aggregation effect in the modifiable temporal unit problem (MTUP) (Cheng and
Adepeju 2014), which is similar to the scaling effect in the well-known modifiable areal unit
problem (MAUP) (Openshaw 1984). The temporal aggregation effect indicates that different
temporal resolutions may result in varying outcomes (Cheng and Adepeju 2014). Previous
studies have shown that the use of CDRsmay introduce biases into humanmobility research
because of their sparse temporal resolutions (e.g. Ranjan et al. 2012, Zhao et al. 2016).
However, a series of designed TSIs is needed to systematically investigate and better
understand the temporal aggregation effect. This design, on the one hand, is in agreement
with previous studies that investigate the temporal aggregation effect (Cheng and Adepeju
2014, Liu et al. 2017). On the other hand, it can provide practical insights in collecting
datasets regardingmobile phone location data with customized TSIs according to particular
research purposes, which is becoming possible (e.g. Ratti et al. 2006).To systematically
investigate the temporal aggregation effect in human mobility studies using mobile
phone location data, this study attempts to (1) reveal and quantify the impact of TSIs on
typical mobility indicators of different types; (2) based on the sensitivity of mobility indica-
tors on TSI, offer insights on how to choose proper temporal resolutions or choose suitable
mobility indicators to answer particular mobility-related issues.

The rest of this paper is organized as follows. Section 2 reviews several related studies.
Sections 3 and 4 describe the dataset and the selected indicators used in this study,
respectively. Section 5 investigates the changes in the value of the four selected indicators
caused by the use of different TSIs from both individual and aggregate perspectives. Finally,
we discuss the results and draw conclusions in Sections 6 and 7, respectively.
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2. Related works

2.1. Measuring human mobility patterns using mobile phone location data

Compared to traditional datasets such as travel diary data or GPS-assistant survey data,
large amounts of mobile phone location data exhibit advantages of large sample sizes
and low-cost data collection processes (Yue et al. 2014, Birenboim and Shoval 2016) but
fall short of the spatiotemporal resolution and richness of semantic information of users
and their activities (Widhalm et al. 2015, Diao et al. 2016). Given the fluctuations in
people’s activity locations, which range from daily to monthly (Järv et al. 2014, Widhalm
et al. 2015), coarse temporal resolutions may result in some activity locations being
ignored. In general, mobile phone location datasets offer a useful source for under-
standing people’s daily lives by extracting socioeconomic characteristics with the help of
various mobility indicators (Liu et al. 2015, Steenbruggen et al. 2015). However, most of
these studies were conducted using one or several mobile phone location datasets with
particular TSIs. In the era of big data, few cross-validations have been carried out in
these studies (Lazer et al. 2014), and the extent to which we can trust the conclusions of
human mobility studies remains an open question (Miller and Goodchild 2015). Whether
related datasets are suitable for answering particular questions or what kinds of impacts
the quality of the datasets may introduce need further investigation before we use them
to draw any useful knowledge (Shaw et al. 2016).

Various indicators have been developed to measure different dimensions of human
mobility patterns based on mobile phone location data. For instance, movement
entropy has been used to reflect the randomness of people’s daily activity locations
and evaluates the predictability of the next activity location (Eagle and Pentland 2006,
Song et al. 2010). In addition, approximate standard ellipses and their eccentricities can
describe the shape of people’s visited locations (Yuan et al. 2012, Ahas et al. 2015).
Regarding the extent of daily activity locations, both radius of gyration and the diameter
of all the activity locations can provide appropriate measures for corresponding pur-
poses (González et al. 2008, Xu et al. 2016a). For travel strength, daily travel frequency
and commuting distance are commonly used indicators for investigating the difference
in people’s mobility patterns and the degrees of home-work balance between cities
(Isaacman et al. 2010, Xu et al. 2016a).

2.2. Temporal sampling intervals in mobile phone location data

Currently, there are two main types of mobile phone location data collected using cell
identification positioning techniques (Ludden et al. 2012) in existing studies: (1) mobile
phone user-based data, which contain records from a user generating a communication
event (e.g. a phone call or Internet access) through a mobile network and (2) cell-tower-
based data, which mainly contain records such as handovers between cell towers and
periodic update records generated by mobile network operators (Yue et al. 2014).

The temporal resolutions of both types of mobile phone location data are often
sparse and differ from each other (e.g. Chen et al. 2016). CDRs form a mobile phone
user-based type of dataset that is collected passively for billing purpose when users
engage in communication activities, such as making phone calls or sending text
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messages (Wang et al. 2010). The TSIs of CDRs depend on the temporal patterns of
communication events, which show burst patterns over time (Barabási 2005), implying
that the temporal resolutions of CDRs are uneven and sparse. Conversely, datasets that
contain records generated by mobile network operators by periodically detecting the
location of each mobile phone represent a cell-tower-based type of dataset (Calabrese
et al. 2014). Even for network-based datasets, no standard exists that states how
frequently the location of each mobile phone should be updated. Hence, each mobile
phone location dataset may have its own distinct TSI. For instance, the average TSI of
the dataset used in Schneider et al. (2013) was approximately 30 minutes, whereas the
TSI of the dataset used in Yue et al. (2017) was 1 hour. In Ahas et al. (2015), the average
daily sampling frequency of the CDR datasets for Paris and Harbin were 8.13 times and
5.5 times, respectively.

The TSI can reflect how finely the dataset describes the daily activities of correspond-
ing users in the temporal dimension. As Figure 1 illustrates, brief activities may be
neglected when the TSIs of mobile phone location data are coarse (e.g. the activity at
location C in Figure 1). In such cases, the values of mobility indicators may change (e.g.
the daily activity locations and travel frequency change between trajectory II and
trajectory III in Figure 1). Mobile phone location datasets have specific TSIs (Chen et al.
2016); thus, identification of the potential impacts of TSIs on mobility indicator values
requires further investigation.

Researchers have noted that different patterns can be observed for different temporal
resolutions (Çöltekin et al. 2011). Similar to the MAUP, which involves the scaling and

Figure 1. A trajectory example of how different temporal sampling intervals (TSIs) result in different
human mobility indicator values (e.g. activity locations and travel frequency). Trajectory (I) is the
origin one, while trajectory (II) and trajectory (III) are two resampled trajectories with different TSIs.
The TSI of trajectory (III) is three times the TSI of trajectory (II).
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zoning effects of data in spatial dimensions, Cheng and Adepeju (2014) proposed the
MTUP, which consists of three temporal effects: aggregation, segmentation and bound-
ary. Among them, the temporal aggregation effect, which corresponds to the scaling
effect in MAUP, indicates that the results of a space-time clustering method are related
to the temporal resolution of the dataset. In a study of movement, Dodge (2015) noted
that a better interpretation should take the temporal granularity of trajectories into
account. This issue is also prevalent in human mobility studies using mobile phone
location data because the TSIs of those datasets are coarse and varied, but it has not
been systematically investigated.

2.3. The impacts of the temporal sampling issue on human mobility studies

In human mobility studies based on mobile phone location datasets, there are several
temporal sampling issues that should be considered, for example, call frequency, and sam-
pling rates. For instance, Ranjan et al. (2012) examined the potential biases when using only
voice call-based data compared to an unfiltered dataset that also contained text message-
based data and the records corresponding to Internet access activities. They found that voice
call-based data provided a better estimate of the radius of gyration of the users than move-
ment entropy. Zhao et al. (2016) investigated the potential biases of CDRs extracted from the
dataset that also contains other types of records such as handovers and periodic update
records. They found that the low sampling rates of CDRs could cause significant under-
estimates of the values of indicators such as movement entropy and daily travel distance;
however, the data provided a fairly good basis for estimating the radius of gyration. By
collecting the CDRs and corresponding GPS tracking data for 84 users over eight months,
Hoteit et al. (2016) found that CDRs have few impacts on the extraction of important locations
such as homes and workplaces, but they affect the values of the radius of gyration.

We note that most of these studies have focused on biases in CDRs, which represent
a specific kind of mobile phone location data. Recently, the impacts caused by TSIs for other
mobile phone datasets have received increasing attentions. Lu et al. (2017) used a network-
based dataset to demonstrate how the representativeness of mobile phone on the temporal
dimension characterized by different TSIs affected the reported human mobility patterns.
Zhao et al. (2018) argued that coarse temporal resolutions decrease the effectiveness of
identifying stops based on a filteredmobile phone location dataset containing 329 trajectories
with a TSI of five minutes and they proposed a new method to improve the result. Cuttone
et al. (2018) explored two types of predictability in human mobility and discussed how the
temporal resolution affect the accuracies of the predictability using a trajectory dataset
collected by smartphones with a TSI of 15 minutes. These studies caution researchers to be
aware that different TSIs can lead to varying human mobility results. However, a systematic
investigation supported by a series of designed TSIs is needed. It is helpful to better under-
stand the temporal aggregation effect from the theoretical perspective and gain more
practical insight into collecting customized datasets targeted at particular research purposes
or choosing proper research questions based on given datasets.
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3. Dataset

3.1. Data source

This study employed a mobile phone location dataset that was collected by a mobile
phone company in Shenzhen, China. The dataset contained records collected on
a workday in 2013 from more than 1.4 million subscribers. When a user connected to
the Internet, made or received a phone call or text message through the mobile
network, the activity time and the location of the servicing cell tower were recorded
(Table 1). Even during the night, given a smartphone, some apps (e.g. social media apps
such as WeChat) continuously communicated with their servers in the background
through the mobile Internet and generated corresponding records as long as it is on.
This dataset differed from the conventional CDR datasets that contained only phone call
or text message activities, which often lacked records during the night since people
mainly communicate with each other during the daytime. The average TSI of this dataset
was approximately 30 minutes.

Table 1. Sample records of the mobile phone location data.
In addition, the dataset contained data from approximately 3,400 cell towers; the

average distance among the 5 nearest neighbors of each cell tower was approximately

Table 1. Sample records of the mobile phone location data.
UserID TimeStamp Longitude Latitude

460XXXXXX9251 2013–10-XXTXX: XX: XX.000Z 114.XXXX 22.XXXX
460XXXXXX2565 2013–10-XXT XX: XX: XX.000Z 114.XXXX 22.XXXX
460XXXXXX1646 2013–10-XXT XX: XX: XX.000Z 114.XXXX 22.XXXX
460XXXXXX3757 2013–10-XXT XX: XX: XX.000Z 114.XXXX 22.XXXX

Figure 2. Spatial density of the cell towers in the study area.
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550 meters (see Figure 2). To maintain the privacy of the users, all of the phone numbers
in the dataset were anonymized.

3.2. Resampling datasets with TSIs

To investigate the impacts of TSIs, it is necessary to compare the values of each mobility
indicator calculated from datasets with different TSIs. Therefore, we need a benchmark
dataset and a series of TSIs. In this study, we first filtered a subset of users from the raw
dataset with intensively sampled trajectories as the benchmark dataset and denoted the
dataset D0. Every trajectory in D0 is the same as the corresponding user’s trajectory in
the raw dataset. We then applied a downscaling method to resample the dataset with
different TSIs. Next, four typical, commonly used mobility indicators were selected. By
exploring the changes in their values across datasets with different TSIs, this study
revealed how the TSIs of mobile phone location data affect related mobility studies.
The flowchart of the research design is shown in Figure 3.

3.2.1. The characteristics of the benchmark dataset (D0)
To generate D0, we applied three rules to guarantee a high sampling frequency. (1) The
total number of records in one day must exceed 288. This value ensures an average TSI
of less than 5 minutes, which is shorter than most major daily activities. (2) The elapsed
time between the first and the last records should exceed 16 hours to ensure relatively
complete coverage of daily activities. (3) The maximum time interval between consecu-
tive records should be smaller than one hour to guarantee that the records are
temporally well distributed. We obtained 19,370 intensively sampled trajectories in
total based on the above three rules. Some noise might exist in the raw trajectories in
D0. For example, the ‘ping-pong’ phenomenon, which was represented in the data as
quick moves between neighboring locations, is a typical type of noise (Iovan et al. 2013).
We followed the method used in the work of Horn et al. (2014) to mitigate the impacts
of that noise by removing abnormal records using a velocity threshold of 80 km/h
(which is the speed limit of the urban traffic systems in many cities in China). A record
will be determined to be abnormal if both the speeds of the trip between the record
and its previous one and the trip between the record and its following one are greater
than 80 km/h. As a result, the average TSIs of more than 75% of the trajectories in D0

Figure 3. The research design in this study.
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were smaller than 200 seconds (Figure 4), and the standard deviation of the TSIs of
almost 75% of the trajectories in D0 were also smaller than 200 seconds, which indicates
that the trajectories in D0 were both intensively sampled and relatively evenly distrib-
uted in time. The specific distributions of the average TSIs and the standard deviation of
the TSIs could be found in Figure S12 in the supplementary file.

3.2.2. The selection of TSIs
To systematically examine the effects of the TSIs, we need to introduce a series of
datasets with different TSIs. As far as we knew, the finest average TSI of the large
amounts of mobile phone location data used in previous studies was approximately
30 minutes (Schneider et al. 2013, Widhalm et al. 2015). Considering that fact, we
adopted 15 minutes, or half the previous finest average TSI, as the first TSI of the series
and used 15 minutes as the increment interval for the resampled datasets. Considering
that the D0 used in this study covered only one day, if a TSI was too large, the number of
records for each user in the resampled dataset was too small to appropriately reflect the
characteristics of the activities of those users. Hence, we fixed the upper end of the TSI
range at four hours, which was far longer than the TSI values used in many related
studies (Ratti et al. 2006, Xu et al. 2016a). Thus, we obtained 16 resampling TSIs that
started at 15 minutes and increased in 15-minute steps to 4 hours (240 minutes). Here,
Di (where i = 1, 2, 3… 16) represents the datasets resampled from D0 using each TSI in
the series. The TSI of each Di in this study was computed using the following equation.
For instance, the TSI of the resampled dataset D2 was 30 = 15 * 2 minutes.

TSIDi ¼ 15� i minuteð Þ; i ¼ 1; 2; 3; . . . ; 16 (1)

3.2.3. Resampling trajectory datasets (Di) with TSIs
For the resampling operation, we needed a start time t0 and a specific TSI τi (see Figure
5). Given a t0, if one or more records fell within a resampled time window defined by τ,
we chose the record closest to the center of the time window (Figure 5). Otherwise,

Figure 4. Boxplots of the statistical information for the TSIs for the trajectories in D0.
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there was no record in the time window and the resampled trajectory. For each specific
τ, we used 50 different randomly selected t0 values to generate corresponding
resampled trajectories and calculated the average value of each mobility indicator to
reduce the potential influence of the particular start times. The probability distributions
and the cumulative probability functions of the average TSIs for users in Di are shown in
Figures S13 and S14 in the supplementary file.

4. Typical mobility indicators and the measurement of the effects of TSIs

4.1. Typical mobility indicators

We selected four commonly used mobility indicators that describe human mobility
patterns from different perspectives. Specifically, we used movement entropy and the
radius of gyration to measure spatial randomness and extent, respectively, eccentricity
to depict the shape of daily activity locations, and daily travel frequency to reflect the
strength of people’s daily movements.

4.1.1. Movement entropy
In the field of information theory, entropy refers to the randomness and general
uncertainty of target items (Shannon 1948). Researchers have introduced movement
entropy, which is based on this concept, to measure the randomness of daily activity
locations of an individual (Eagle and Pentland 2006, Qin et al. 2012). The following
equation shows the general calculation:

H ¼ �
XN
n¼1

pn � log2pn (2)

where H is the entropy value, N is the total number of unique items, and pn is the
proportion of each item (see Figure 1 for examples). The movement entropy can be

Figure 5. The progress of the resampling method.
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calculated after defining pn according to the purpose of the study (Song et al. 2010). In
this study, N is the total number of activity locations, and pn is the percentage of records
at location n.

4.1.2. Radius of gyration
Radius of gyration (ROG) refers to the distribution of a component of an object around
an axis (Goldstein et al. 2013). Considering that a trajectory consists of a series of
location records, researchers have applied this concept to measure the spatial extent
of the activity of people by taking each record to represent a mass point (González et al.
2008). ROG is normally calculated using Equation (3):

Rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
�
XN
n¼1

DIS Ptn; Pt;mean
� �2

vuut (3)

where Rg is the ROG value, N is the total number of daily records, Ptn is the location of
the nth record, Ptmean is the mean center point of all of the recorded locations and DIS is
the distance function. Larger values of Rg generally denote larger spatial extents.

4.1.3. Eccentricity
Eccentricity measures the degree of deviation of an ellipse from a circle (Simmons 1996).
From a morphological perspective, the shape of an individual’s activity locations on
a two-dimensional surface can be approximated as an ellipse. By considering each
record as a mass point, the two derived principal moments of inertia correspond to
the semi-axes of the ellipse (Yuan et al. 2012). The eccentricity of people’s daily activity
locations can be calculated using the following equation:

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2=e1ð Þ2

q
(4)

where ε is the eccentricity value, and e1 and e2 correspond to the principal moments of
inertia (González et al. 2008, Yuan et al. 2012). Possible values of ε range between zero and
one. A larger value of ε indicates a larger difference between the lengths of e1 and e2 (i.e. the
ellipse is narrower). When the lengths of e1 and e2 are the same, εwill be zero (i.e. the ellipse
is a circle). If a person remains at one location all day long, her/his eccentricity is zero
because e1 and e2 are equal.

4.1.4. Daily travel frequency
Daily travel frequency (DTF) is a commonly used indicator in both travel demand
analyses (Martin et al. 1998) and human mobility studies (Carrion et al. 2014).
Typically, a distance threshold such as 300–500 meters is applied to eliminate short
movements from consideration as trips in traditional travel survey data. To that end,
given a trajectory, this study first decomposed it into stays and moves (Equation (5)). The
stops and moves of trajectories (SMoT, see Spaccapietra et al. 2008) model was applied
in this study to achieve the ‘stays-and-moves’ identification purpose. The SMoT model
has been widely applied for detecting stops using both GPS tracking data (Zheng et al.
2009) and mobile phone location data (Widhalm et al. 2015, Tu et al. 2017). Each move
corresponds to a trip. DTF can then be calculated using Equation (6):
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Trajectory ! . . . ; stayp;moveq; staypþ1; . . .
� �

(5)

tFreq ¼ COUNT moveq
� �

(6)

where tFreq is the value of the DTF, stayp is the pth stay, moveq is the qth move, and
COUNT is the counting function. This equation implies that every move segment has an
equal effect on tFreq.

This study adopted the approach used by Jiang et al. (2013) to extract stays from
mobile phone location data using two parameters, a distance threshold and a stay
duration threshold. In this study, considering that the spatial resolution of the cell
towers was approximately 550 meters, we set the distance threshold to 500 meters.
For the stay duration threshold, because the average TSI in the D0 dataset was as small
as 5 minutes, we choose 10 minutes as the duration threshold.

4.2. Measurement of the effects of TSIs on mobility indicators

To better estimate the underestimations, we refer to Zhao et al. (2016) and use the
parameters of a linear regression model to quantify the effects of varying TSIs by fitting
the values of each mobility indicator among the datasets with different TSIs:

Vi ¼ βi;j � Vj (7)

where Vi and Vj are the values of each user’s mobility indicators in Di and Dj, respec-
tively, i,j = (0,1,2,…,16), i > j, and βi,j is the slope of the regression model between Vi and
Vj.

With this linear regression model, firstly, we use βi,j to reflect the relationship between
the values contained in datasets with different TSIs at an aggregate level. βi,j < 1 implies
that the value of a particular indicator decreases and a coarser TSI results in under-
estimations. Otherwise, βi,j > 1 implies that a coarser TSI results in overestimations. Here,
we use (1 – βi,j)*100% to measure the impacts caused by coarser TSIs. Both under-
estimation and overestimation in this study are relative concepts that indicate the trend
of the changes between two different TSIs. The corresponding results would be more
informative if we had a ground truth dataset. Secondly, we further adopt the coefficient
of determination of the linear regression model (R2) to assess how well the slopes of the
linear regression model explains the changes in the mobility indicators among users. An
R2 close to one suggests that the related change exhibits high consistency among users
and that the corresponding models are able to adequately explain the degrees of
change among users.

5. Analysis and results

In this section, we first investigate how each user’s mobility indicators change with TSIs
to learn the basic change patterns for each indicator. Then, to better understand the
trends and extract more practical insights, we quantify the aggregate impacts of TSIs
and compare the differences of the impacts between the four selected indicators.

To compare the changes in the values of the mobility indicators at different TSIs, we
assess both (1) the changes between the raw trajectories in D0 and the resampled
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trajectories in each dataset Di to learn the degree of impact that each TSI can cause and
(2) the marginal changes between pairs of datasets with adjacent TSIs (e.g. 15-minute
and 30-minute) to learn how many impacts each range of TSI contributes to the total
impacts.

5.1. Exploratory analysis of the effects of TSIs on mobility indicators

To analyze how the values of the selected mobility indicators change with the TSIs, we
first use scatter plots to explore the change patterns from an individual level. In the
plots, the horizontal axis represents the mobility values of the same user in the dataset
with a finer TSI, whereas every point in the plots corresponds to the specific mobility
indicators of a specific individual with different TSIs. To better describe the character-
istics of the plots, we employ the Spearman correlation coefficient (r) to measure the
consistency of the changes among users (see Tables S1 and S2 in the Supplementary file)
and the max value (maxV.) to reflect the changes in the value ranges. The content of this
paper would be too long if all the plots of D0 vs. Di and Di vs. Di+1 were presented (16
plots for each group); therefore, we selected 8 plots for each group for each mobility
indicator (Figures 6, 7, 9 and 11). All other plots are listed in the Supplementary file
(Figures S1–S8).

5.1.1 Movement entropy
Regarding movement entropy, we first find that the values decrease with high inter-user
consistency (r > 0.96) of degrees as TSI increased (see Figure 6(a)). Second, the marginal
changes caused by 15-minute increases of TSIs tend to be minor (see Figure 6(b)), which
implies that a 15-minute difference has few impacts on each user’s movement entropy.

Movement entropy reflects the randomness of daily activity locations. Its value will
decrease when some activity locations are neglected with increasing TSIs. However,
activities with short duration times (e.g. eating lunch outside or shopping after work) are
more easily neglected, and movement entropy is weighted by the duration times of
daily activities. We refer to the concept of k-ROG (Pappalardo et al. 2015, see Section
5.1.2 for more detailed information) and introduce k-En to test the influences of activity
duration times on the movement entropy. The k-En represents the movement entropy
derived from the top K most frequent activity locations. As Figures S17 and S18 in the
supplementary file indicate, the 2-En (meaning the movement entropy derived from the
top two most frequent activity locations) in the resampled datasets contribute the most
significant part for the movement entropy. Specifically, more than 25% of users’ 2-En
contribute more than 80% of the benchmark values derived from D0 and more than
40% of users’ 2-En contribute more than 80% of the movement entropy derived from
the corresponding resampled dataset. Therefore, these neglected activities with short
duration times have limited impacts on this indicator.

5.1.2. Radius of gyration
The values of the ROG exhibit both high robustness and high consistency of change
degrees (r > 0.977) among users as the TSI increases (see Figure 7). Moreover, the max-
imum ROG value is also very stable and changes from only 31.83 km to 30.84 km as the TSI
increases in D1 to D15. One of the key reasons is that the value of ROG is weighted by the
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duration time of activity locations and activities with short duration times are more easily
neglected, which is similar to the situation of movement entropy. Pappalardo et al. (2015)
introduced a concept of k-ROG to present the radius of gyration derived from the top
K most frequent activity locations. This concept was used to test the contributions of k-ROG
to the conventional ROG derived from all the records. We found that more than 50% of
users’ 2-ROG (meaning the ROG value derived from the top two most frequent activity
locations) derived from the resampled datasets contribute 80% more of the benchmark
values derived from corresponding users in D0. With regard to the values of ROG derived
from the resampled datasets, more than 70% of users’ 2-ROG contribute 80% more
accounts. (Figures S19 and S20). These results indicate that the locations of the two
major activities determine the main part of the ROG of a user.

Figure 6. Changes in movement entropy between datasets with different temporal sampling
intervals.
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In addition to the duration of daily activities, ROG is further related to the
distances between activity locations and the center locations. When some activity
locations are neglected, activity locations far away from the center location will offset
the influences caused by the activity location located close to the center. As Figure S9
illustrates, the neglect of location B near the center location results in an increase in
ROG from 0.991 to 1.091, while neglecting location D far from the center location
results in a decrease in ROG from 0.991 to 0.9. If both locations are neglected, the
change in ROG is even smaller (e.g. a change from 0.991 to 1.0) than if either location
is neglected. During this process, however, the more activity locations that are
neglected, the greater the movement entropy decreases, regardless of location
(Figure S9). This offset effect makes ROG exhibit higher stability with varying TSIs
than movement entropy.

Figure 7. Changes in the radius of gyration between datasets with different temporal sampling
intervals (Units: km).
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The above results suggest that datasets with very coarse TSIs (e.g. two hours) can
provide good estimations of the spatial extent of the locations of the major activities
(e.g. sleep and work) for each user’s daily life measured by the ROG.

We also note that for users with small spatial extents of daily activity locations
(the points close to the origin in Figure 7(a)), the degree of changes in ROG values
and the variations in the changes among users are larger than those for other users.
This situation can be explained by the concept of space-time constraints from the
time-geography framework (Hägerstraand 1970). When a user has a small spatial
extent of daily activity locations, space-time constraints imposed by travel distances
in the physical world become less critical. She/he can arrange daily activities more
flexibly, and frequent short-duration activities are feasible. Alternatively, long-
distance travel requires considerable time and limits the ability of people to perform
other activities. These people tend to have fewer, longer-duration activities. As the
TSI increases, short-duration activities can easily be ignored, resulting in a greater
change in ROG values for users who have a small spatial extent of daily activity
locations.

5.1.3. Eccentricity
For eccentricity, both the changes between D0 and Di and the marginal changes exhibit
lower consistencies among users than movement entropy and radius of gyration. Figure
8(a) indicates that there are more points close to the axis εD0 = 1 (meaning the locations
of the user’s daily activities are located along a line) and the axis εDi = 0 (meaning the
user stays at one location all day long or the locations of her/his activities are evenly
located in a circle) as the TSI increases. It indicates that many users’ eccentricities
decreased from values close to a value smaller than one to one or zero directly, which
implies decreasing patterns with increasing TSIs.

Eccentricity is weighted by both the duration times of daily activities and the
spatial distribution of activity locations. Its value may change from the maximum to
the minimum as TSI increases, especially for users with few outdoor short-duration
activities (e.g. morning jogging and after-dinner recreation are popular for elderly,
retired people in Shenzhen, China). Both the short-duration outdoor activities (Figure
S10(a)) and the ‘fake moves’ (Zhao et al. 2018) caused by undetected ping-pong
phenomena (Figure S10(b)) for these users are easily neglected. As a result, the daily
activity locations derived from the dataset may change from many to two or one,
which results in significant changes in eccentricities (Figure S10). However, the short-
duration outdoor activities and the ‘fake moves’ for these users have limited impacts
on the values of movement entropy and radius of gyration (Figure S10). Therefore,
the eccentricity exhibits an obviously lower inter-user consistency in change degree
than the above two indicators.

Although the scatter plots do not show clear linear correlations (Figure 8(a)), the
Spearman correlation coefficients remain significant and relatively high (e.g. D0 vs.
D15; r > 0.7). One key reason underlying this phenomenon is the skewed distribution
of the eccentricity values of the users because the eccentricities of many users were
close to one, given that the top two major places accounted for the majority of most
people’s daily lives (Bagrow and Koren 2009) and these two locations form the shape
of a ‘line’.
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5.1.4. Daily travel frequency
From Figure 9, we first find that a certain coarse TSI (e.g. two hours for D8) leads to
a significant decrease in DTF compared to the results derived from D0. The degree of the
decrease is clearly larger than the above three indicators. In addition, the DTF of people
who travel more frequently is more highly affected by the changing TSIs (Figure 9
(a)). Second, the degrees of marginal change decrease with increasing TSI. Moreover,
when the TSI was smaller than one hour (D4), the marginal change tended to be larger
(Figure 9(b)). Third, the DTF values of many users decrease to approxmately two as the
TSI increases (Figure S16), no matter how large they grew from D0, especially when the
TSIs exceeded two hours (i > 8). In other words, the rates of decrease vary among users.
This situation results in a relative low Spearman coefficient for the changes between D0

Figure 8. Changes in eccentricity between datasets with different temporal sampling intervals.
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and Di among users for DTF. In fact, those two trips probably corresponded to the two
commuting trips that were relatively robust to changes in the TSI.

Unlike the above three indicators, a short-duration daily activity contributed equally to
the value of DTF as a long-duration daily activity. These short-duration activities account for
a significant part of people’s daily lives (Golledge and Stimson 1997). However, they are
easily neglected as the TSI increases, which results in a significant decrease in DTF.

5.2. Quantitative analysis of the effects of TSIs on mobility indicators

Figure 10 shows the quantitative results of the effects of TSIs on the four selected
mobility indicators measured by the linear regression model for the changes between

Figure 9. Changes in daily travel frequency between datasets with different temporal sampling
intervals.
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D0 and Di (Figure 10a) and marginal changes between Di-1 and Di (Figure 10b), where
i = 1, 2, 3,…, 16. The corresponding regression parameter values are listed in Tables S3
and S4 in the Supplementary file.

We find that coarser TSIs tend to underestimate the values of the selected mobility
indicators and the underestimations vary across indicators. Specifically, Figure 10(a)
indicates that the underestimations of daily travel frequency compared to D0 exceed
those of the other three indicators. The radius of gyration is the most stable indicator.
Even when the TSI is as large as four hours, the underestimation is less than 10%
compared to D0. Movement entropy experiences a similar but slightly smaller under-
estimation than that for eccentricity. In addition, for TSIs smaller than one hour (i < 4),
the marginal underestimations caused by 15-minute increases of TSI tend to be higher,
especially for daily travel frequency (Figure 10b). For instance, a 15-minute increase in

Figure 10. The impacts of the temporal sampling interval (TSI) on the values of different mobility
indicators, as measured by (1-β)*100%. The size of each point corresponds to the R2 of the
corresponding linear regression model. Smaller R2 values indicate greater variations in the degree
of underestimation among users for the different mobility indicators.

Figure 11. Duration times of the stays in the ‘stays-and-moves’ identification results derived from D0
based on the SMoT.
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TSI leads to more than 10% (even 21% for D1 vs. D2) underestimation in the DTF when
the TSI is smaller than one hour, while it mostly causes less than 5% underestimation in
the DTF otherwise.

The sizes of the markers in Figure 10 represent the R2 of corresponding models. In
terms of the underestimation compared to D0, the consistency of daily travel frequency
among the users decreases rapidly with increasing TSIs, whereas those for radius of
gyration and movement entropy are relatively stable. It implies that a certain coarse TSI
(e.g. two hours) may lead to very different impacts across users. Regarding movement
entropy and eccentricity, their values experience similar degrees of underestimation at
an aggregate level for a certain coarse TSI. However, the corresponding underestima-
tions exhibit different degrees of consistency among users (Figure 10a), especially for
relatively coarse TSIs (e.g. four hours). It suggests that researchers should be aware of
the heterogeneity of the impacts on the derived mobility patterns caused by coarse TSIs
among populations. In addition, Figure 10(b) illustrates that the marginal underestima-
tions exhibit high degrees of consistency among users. It implies that a 15-minute
increase in TSI causes minor inter-user consistency for the four selected mobility
indicators.

6. Discussion

First, the degrees of the impact of TSIs on different mobility indicators are related to
what activity features these indicators measure and how these features are quantified.
Daily travel frequency is related to each stay in the ‘stay-and-move’ results regardless of
its duration time. As Figure 11 indicates, the duration time of approximately 70% of stays
derived from D0 based on the SMoT (see Section 4.4) is shorter than one hour. As the
result of Carrion et al. (2014) implied, mobile phone location data with fine temporal
resolution tended to capture more short-duration daily activities (e.g. meal/eating break
or recreation) than traditional survey data. These stays with short duration times are
easily neglected with increasing TSIs, and the daily travel frequency decreases directly.
However, the other three indicators are related to the location and the duration time of
stays. Stays with longer duration times are more easily sampled with changing TSIs, and
they usually involve more records in corresponding trajectories (e.g. the activities at
locations A and B in Figure 1). As Figure 11 indicates, more than 80% of the longest stays
last longer than 8 hours and more than 70% of the second longest stays last longer than
4 hours. The duration-time-weighted indicators are more determined by the activities
corresponding to these two stays mathematically than other activities (Kang et al. 2012).
Therefore, a given TSI leads to a higher underestimation of daily travel frequency than
the other three indicators. For example, most of the stays in D0 that last less than
one hour cannot be identified as stays if the TSI becomes one hour; thus, 70% of stays
can lead to more than five times higher underestimation of the daily travel frequency
than the other three indicators (see Figure 10).

Second, the impact of TSIs on different indicators are complex at the individual level.
Although coarser TSIs tend to underestimate the four selected indicators, the phenom-
enon in which some points are located above the diagonal lines in Figures 6–8 indicates
that the values of the movement entropy, the radius of gyration and the eccentricity
may increase with the TSI for certain users. In addition, the plots in Figure 9(a) indicate
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that for people who travel frequently, their daily travel frequencies are underestimated
more. With regard to eccentricity, if the number of activity locations of a user decreases
to two dues to the neglected activities with increasing TSIs (e.g. trajectories in Figure S10
(a)), its value will increase directly to one (the points at the axis of εDi = 1 in Figure 8),
which is the maximum value. When the TSI increases, the radius of gyration will increase
with an increase in the proportion of the locations that are far from the center of daily
activities (e.g. location D in Figures S9 and S11), while the movement entropy will
increase if all the locations are retained and the proportions of the locations with long-
duration activities decreases (e.g. location A in Figure S11). As for daily travel frequency,
people who have more daily trips tend to have more activities with short duration times,
which are more easily neglected for a given TSI. Understanding the influences of the TSI
among people can provide helpful insights to estimate the potential biases in policy-
making based on mobile phone location data. For instance, short-distance trips are
important for non-motor travel planning such as public bicycle planning (Xu et al.
2016b). These trips often involve short-duration activities, which, however, are easier
to be neglected if the TSI is relatively large (e.g. one hour). As a result, the travel demand
of these short-duration activities will be underestimated, especially for the people who
travel more frequently.

Third, the selection of TSI is highly relevant to the research question. On one hand,
when the research question is related to the spatial extent of activity locations with long
duration [e.g. using the radius of gyration to study regional poverty (Blumenstock et al.
2015)], coarse TSIs (e.g. four hours) would be acceptable. When the research question is
about the daily travel frequency such as using the daily travel frequency to evaluate
urban travel demands (Çolak et al. 2015), a small TSI (e.g. smaller than 0.5 hours) should
be used. On the other hand, given a mobile phone location dataset, if its TSI is
sufficiently large (e.g. two hours or larger), indicators such as daily travel frequency
and eccentricity are not suitable to describe the corresponding characteristics of the
involved users. However, it can potentially provide a relatively good estimation of the
radius of gyration and movement entropy for the descriptions of the corresponding
characteristics of users’ activity patterns. This issue refers to the temporal aggregation
effect in the MTUP, which reminds researchers to choose the proper temporal resolu-
tions when answering specific questions.

Fourth, a better interpretation of the relationship between TSI-related features and
mobility indicators must account for the impacts of TSI. For example, Yuan et al. (2012)
found that people who have higher call frequencies have higher movement entropy.
This result can be partially explained by the effects of TSIs. People who have higher call
frequencies, indicating more frequent location records and smaller TSIs, receive smaller
underestimations from the TSIs and tend to have a higher movement entropy (see
Figure 10). This issue is related to the temporal aggregation effect in MTUP. In fact, the
MTUP is a fundamental question in space-time analysis, similar to the MAUP. Researchers
need to be aware of this factor when they interpret corresponding outcomes to avoid
potential misinterpretation of related conclusions.

Last, the dataset adopted in this study partly limited certain promising research
directions. For instance, this study only reveals how the TSI, ranging from 15 minutes
to 4 hours, affects the outcomes of the daily mobility patterns because the dataset in
this study only covered one workday. However, human mobility patterns exhibit both
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regularity and fluctuations across different time scales (e.g. González et al. 2008, Järv
et al. 2014, 2017). Investigating how the outcomes change with the TSIs in deriving
activity patterns over different time scales (e.g. seasonal activities such as tourism) is
another basic research topic. In addition, considering that the time spans of most mobile
phone location datasets in previous publications vary significantly, answering ‘how long
is long enough’ for a specific research purpose is worthy of further investigation. This
issue further involves another practical topic that how to balance data quantity and data
quality in answering a particular question. These meaningful topics require correspond-
ing dataset support that the dataset in this study could not provide.

7. Conclusions

This study quantifies and reveals the complex impacts of TSIs of mobile phone location
datasets on four typical human mobility indicators with a series of designed TSIs that
increase at a fixed interval of 15-minutes from 15 minutes to 4 hours. We find that the
impacts of TSIs are strongly related to the mobility feature that each indicator measures
and how an indicator quantifies such feature mathematically. Specifically, (1) movement
entropy receives a certain amount of underestimation from increasing TSIs compared
with the value derived from the intensively sampled trajectory (D0, TSI < 5 minutes). The
degrees of underestimation have a high consistency among users. (2) The radius of
gyration is a very stable indicator when the TSI changes. It implies that even a mobile
phone dataset with a relatively coarse TSI (e.g. two hours) can adequately estimate users’
radius of gyration. (3) Eccentricity receives close underestimation with movement
entropy from the aggregated level. However, the degrees of the impacts for this
indicator vary significantly across users, especially for users with few short-duration
daily activities. (4) Daily travel frequency derived from mobile phone location data can
receive more than five times higher underestimation from increasing TSIs than the other
three indicators. The underestimations are mainly derived from the increase in the TSI
when the TSI is smaller than one hour. In addition, the degrees of underestimation also
change significantly among users and users who travel more frequently receive higher
underestimation for their daily travel frequencies. (5) Except for daily travel frequency,
the other three indicators may increase with TSI for certain particular users.

The above findings demonstrate that the temporal aggregation effect of MTUP
(Cheng and Adepeju 2014) have different influences on the results derived based on
different mobility indicators. Being aware of the MTUP is useful to better understand the
conclusions derived from current mobile phone location datasets such as the relation-
ship between users’ call frequencies and movement entropies (Yuan et al. 2012), or the
travel demand of a public bicycle system (Xu et al. 2016b). In addition, related findings
can also provide insightful suggestions in designing appropriate research questions
based on given datasets and choosing proper datasets for particular research purposes.

In the future, we plan to examine the impact of the TSI on human mobility indicators
across populations with typical activity patterns; for example, people who stay in a local
area all day and people who travel a lot during the day. Such work will provide more
informative implications for group-based human mobility studies. In addition, how the
time span of mobile phone location datasets (the time span of the dataset in this study
is only one day) and temporal resolutions jointly affect the outcomes of human mobility
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patterns derived from mobile phone location data is another meaningful topic.
Investigations on this topic can provide more insightful suggestions for choosing
appropriate datasets to answer particular questions.
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