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A B S T R A C T

Understanding the relationship between human mobility and land use has been a longstanding topic in multiple
disciplines, including transport geography and urban planning. Recently, urban collective mobility patterns have
become a hot research direction and has been explored at an unprecedented space–time scale due to the
emerging big human tracking datasets (e.g., mobile phone data). However, only a few studies have compre-
hensively quantified the effects of land use on human mobility patterns while considering the influence of the
scale of spatial analysis units. This study attempts to reinforce this knowledge by investigating urban human
convergence–divergence patterns and their relationship with land use distribution characteristics at three
popular types of spatial analysis units of human mobility studies (voronoi polygons, grid cells, and traffic
analysis zones) using mobile phone data. A case study on Shenzhen, China is implemented, and results indicate
that eight distinct convergence–divergence patterns could be extracted to describe urban collective mobility
patterns despite the use of different types of spatial analysis unit. Moreover, the scale of spatial analysis units
exerts a few effects on the quantification of the influence of land use distribution on human con-
vergence–divergence patterns, but some common characteristics could be summarized from these discrepant
results. The findings can help policy makers understand urban human mobility and can serve as a guide for
urban management and planning.

1. Introduction

Investigating the interactions between human mobility and urban
land use characteristics has been a classic research topic since the
emergence of cities and has attracted considerable attention from the
fields of human behavior, urban studies, and transport geography; such
research attention has contributed to its potentially tremendous im-
plications in urban spatial planning, traffic forecast, and optimization
(Chen, Chen, & Barry, 2009; Gan, Yang, Feng, & Timmermans, 2018;
Goodchild, Klinkenberg, & Janelle, 1993; Lee & Holme, 2015; Liu,
Wang, Xiao, & Gao, 2012; Næss & Jensen, 2002; Newman & Kenworthy,
1996). Collective human mobility patterns are strongly associated with
the spatial distribution of urban land use, which is the primary inherent
motivation for many people to move in the city. Such movements are
highly time dependent (e.g., commuting is a typical human activity
during rush hours and traverses between work-related and residential

lands).
Researchers worldwide have long made substantial efforts to un-

derstand complex human travel behavior and their interaction with the
urban environment from individual and collective perspectives. For
example, a body of literature has maximized travel survey data to ex-
amine the characteristics of individual travel behavior and its influence
factors, such as sociodemographic (Kim, Woosnam, Marcouiller,
Aleshinloye, & Choi, 2015; Kwan & Ren, 2008; Ta, Kwan, Chai, & Liu,
2015), built environment (Hong, Shen, & Zhang, 2014; Wang & Zhou,
2016), and land use characteristics (Litman & Steele, 2012). Although
this type of dataset is able to present individual travel behavior at a
micro level due to its abundant records of space–time activities and
socioeconomic attributes of interviewees, two distinct drawbacks still
exist. First, the collection of this dataset is costly, laborious, and time
consuming, hence it is difficulty to capture travel behavior in time
when changes occur (e.g., changes in land use or built environment of a
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place). Second, the small sample size and low spatial–temporal re-
solution hinder the comprehensive understanding of human mobility
from a macroscopic perspective (e.g., human spatiotemporal dynamics
of a whole city) (Xu et al., 2015; Yuan & Raubal, 2012).

Fortunately, with the emergence of mobile intelligence that urges
the ubiquitous use of location-aware devices and social applications,
massive human tracking datasets (such as mobile phone call data, social
media data, and smart card data) have been collected as a by-product of
these devices, thereby increasing the possibility of monitoring the
space–time movements of people at a large scale (Liu et al., 2015; Toch,
Lerner, Ben-Zion, & Ben-Gal, 2018; Yue, Lan, Yeh, & Li, 2014). These
emerging datasets stimulate researchers to review the conventional
research questions about human mobility at an unprecedented
space–time scale, with contents including but not limited to human
mobility prediction models (González, Hidalgo, & Barabási, 2008; Song,
Qu, Blumm, & Barabási, 2010), human activity space (Xu et al., 2016;
Yuan & Raubal, 2016), socioeconomic characteristics (Lenormand
et al., 2015; Luo, Cao, Mulligan, & Li, 2016; Xu, Belyi, Bojic, & Ratti,
2018), and urban spatial structures (Jiang, Joseph Ferreira, & Gonzalez,
2012; Galpern, Ladle, Alaniz Uribe, Sandalack, & Doyle-Baker, 2018;
Lee, You, Eom, Song, & Min, 2018; Louail et al., 2015; Zhang, Liu, Tang,
Cheng, & Wang, 2019). These datasets have also increased the attention
to the study of collective human mobility patterns from different per-
spectives (Gao, 2015; García-Palomares, Salas-Olmedo, Moya-Gómez,
Condeço-Melhorado, & Gutiérrez, 2018; Shaw, Tsou, & Ye, 2016; Sui &
Shaw, 2018). Deep insights into human spatiotemporal mobility pat-
terns and their interaction with the urban environment could benefit
domains from urban planning and transportation to public health.

The human mobility patterns are closely related to land use char-
acteristics. On the basis of this fundamental knowledge, some attempts
have been made to infer or detect urban land use distribution from
human spatiotemporal dynamics, which is extracted by using big
geospatial datasets (Pei et al., 2014; Ríos & Muñoz, 2017; Toole, Ulm,
Gonz, & Bauer, 2012). The general procedure is to construct a human
dynamic time series for each spatial unit and cluster spatial unit with
similar variation curves and then assign a certain land use to the spatial
units of each group. However, the spatial unit is usually composed of
different land uses, and its function changes over time (Tu et al., 2017);
thus, further steps are needed to examine the land use characteristics of
each group. Another main thread of this field is to investigate the re-
lationship between land use and human movements to identify the ef-
fects of land use on human mobility (Gan et al., 2018; Gong, Lin, &
Duan, 2017; K. Kim, 2018; Tu et al., 2018; Z. Yang et al., 2018).
However, these studies mainly focus on quantifying the effects of land
use on the ridership of urban public transport (e.g., subway or taxi) and
thus cover only some specific areas (e.g., areas near subway stations) or
people who take public transport. Moreover, the variations in the
number of people for a place over time are not considered as a dynamic
process in these analyses.

Along this thread of work, this study aims to reinforce knowledge on
the relationship between land use distribution and human mobility
patterns using mobile phone location data. For a spatial analysis unit,
the convergence or divergence status respectively indicates whether the
number of people is increasing or decreasing over time. The function of
a spatial unit changes over time due to mixed land use distribution (Tu
et al., 2017); this effect may lead to an alternative occurrence between
human convergence and divergence during the day. Therefore, the
main goal of this study is to investigate urban human con-
vergence–divergence patterns and their underlying land use char-
acteristics by addressing the following questions: What are the alter-
native patterns of convergence–divergence that occur in the city? What
differences exist in land use distribution among these con-
vergence–divergence patterns? We also examine whether common
characteristics could be derived from different types of spatial analysis
units. On the one hand, addressing these questions would give insights
into the urban spatial–temporal dynamics of human

convergence–divergence as well as their relationship with land use
distribution. On the other hand, it would consider the effects of the
modifiable area unit problem (MAUP) to seek some common char-
acteristics from different types of spatial analysis units.

In this work, we establish a time series indicator to describe the
human convergence–divergence alternative sequence. Clustering ana-
lysis was utilized to classify the spatial analysis units with similar
convergence–divergence alternative patterns into groups. For each
group, we sketch the outline of the dynamic curve to present the main
human convergence–divergence processes. Next, multinomial logistic
regression (MLR) is employed to reveal the land use characteristics for
each human convergence–divergence pattern. Using mobile phone data
in Shenzhen, China as a case study, we implement the above steps on
three popular types of spatial analysis units (voronoi polygons, grid
cells, and traffic analysis zones (TAZs)), which are frequently used to
study human mobility patterns, to check whether consistent conclu-
sions can be derived from different types of spatial units.

The rest of the paper is organized as follows. The study area and
mobile phone data are introduced in Section 2. The methodology used
in this study, including the extraction of human con-
vergence–divergence patterns and a brief statement on MLR, is de-
scribed in Section 3. Specific results and discussions are presented in
Section 4. The conclusion of this study and future work are provided in
Section 5.

2. Study area and dataset

2.1. Study area

The study area of this research is Shenzhen, which is located in the
southeastern part of China and is adjacent to Hong Kong. Since the
reform and opening-up policy in 1979, Shenzhen has experienced rapid
development and has developed into a famous financial and technolo-
gical center in China. Currently, the total area of Shenzhen is ap-
proximately 2000 km2 and is divided into 10 administrative districts,
which can be further classified into downtowns, suburbs, and rural
areas on the basis of the extent of their economic development (Fig. 1).
Therefore, the Futian, Luohu, and Nanshan districts are concentrated
with various commercial, financial, and high-tech companies, whereas
the other districts are mainly occupied by industrial parks and factories.
Shenzhen's rapid economic development, openness, and inclusiveness
have attracted a mass of immigrant workers from other provinces who
seek job opportunities. As a result, Shenzhen has become one of the
most populated cities in China, with a population of more than 15
million. In this study, we utilized the following kinds of spatial analysis
units to check the effects of land use characteristics on human con-
vergence–divergence dynamics: voronoi polygons, regular grid cells,
and TAZs. The voronoi polygons are produced on the basis of cell phone
towers, and the spatial scale for grid cells is 500m×500m. TAZs are
often used for traffic management and forecast. The mean area of
voronoi polygons, grid cells, and TAZs are 0.32, 0.25, and 1.86 km2,
respectively.

2.2. Data description

The mobile phone location data used in this study were acquired
from a main mobile phone operator, which accounts for more than 60%
of the mobile phone market in Shenzhen. The dataset covers the foot-
prints of approximately 16 million mobile phone users within a typical
workday in 2012. Unlike the data comprising call detail records that
sample individual locations only during communication events (such as
phone calls and text messages) (Fang, Yang, Xu, Shaw, & Yin, 2017), the
mobile phone data used in this study actively capture every mobile
phone record (at the cell phone tower level) with a regular interval of
approximately 1 h. These data were originally collected for trouble-
shooting by the mobile operator. Therefore, each record only contains
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four fields: user ID, recording time, and the longitude and latitude of
the corresponding cell phone tower that the phone is connecting to. For
privacy protection, the ID was encrypted before it was used for this
study. Table 1 shows an instance of a cell phone user's records during a
day. In summary, more than 5900 cell phone towers were extracted
from the dataset, and each tower was labeled using a unique number.

Another dataset used in this study was Shenzhen's land use data,
which were generated in the same year as the mobile phone location
data. The dataset included 53 land use types in detail; we aggregated
these land use types into six categories according to the urban land use
and planning standards of land development. The six categories were
commercial (wholesale, retail, accommodation, catering, and financial
land, etc.), industrial (industrial parks, factories, and warehouses, etc.),
residential, public (schools, hospitals, scenic spots, and public parks,
etc.), transport and special lands (military, jail, and funeral, etc.). The
special lands are little related with activities of urban residents, thus the
other five land categories were used to analyze the relationship be-
tween land use and human convergence–divergence dynamics.

3. Methodology

The methodological workflow of this study is presented in two
subsections. Section 3.1 describes how to extract human con-
vergence–divergence patterns from mobile phone location data. Section
3.2 briefly explains the principle of multinomial logistic regression,
which is employed to quantify the effects of land use characteristics on
human convergence–divergence patterns.

3.1. Extracting human convergence–divergence patterns

In our previous studies, we extracted cell phone tower-based
movements by checking the transformation of an individual's location
between two adjacent windows and generated 23 movement matrices
in an entire day (Fang et al., 2017; Yang et al., 2016). In this study,
three popular divisions, namely, voronoi polygons, regular grid cells,
and TAZs, are considered as spatial analysis units, which have been
widely used in urban transport geographic studies and human mobility
analyses. Therefore, we should further transform the tower-based
movements into movements on the basis of the spatial scales of the
three analysis units.

For voronoi polygons, which are generated on the basis of the ori-
ginal cell phone tower; thus tower-based movements can be directly
used to extract human convergence–divergence patterns for voronoi
polygons. Regular grid cells and TAZs need further aggregation to
transform tower-based movements into grid-based and TAZ-based
movements. Inspired from areal interpolation method in existing study
(Yin et al., 2015), this study allocated the tower-based flows according
to the proportion of overlapping areas between voronoi polygons and
grid cells or TAZs. Fig. 2 depicts an example of aggregating tower-based
OD flow into TAZ-based movements, and the green areas are over-
lapping areas between voronoi polygons and TAZs. The specific formula
can be described as follow:

Fig. 1. Study area of Shenzhen.

Table 1
Instance of an individual's cell phone records in a day.

User ID Record time Time window Longitude Latitude

5u3d2c9 ****** 00:20:33 00:00–01:00 113.*** 22.***
5u3d2c9 ****** 01:22:45 01:00–02:00 113.*** 22.***
5u3d2c9 ****** 02:26:50 02:00–03:00 113.*** 22.***
5u3d2c9 ****** … … …
5u3d2c9 ****** 23:30:52 23:00–24:00 113.*** 22.***

Fig. 2. An example of aggregating tower-based OD flow into TAZ-based
movements.
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where Ai
m represents the overlapping area between voronoi polygon m

and TAZ i, Aj
n represents the overlapping area between voronoi polygon

n and TAZ j. Am and An represent the area of voronoi polygon m and n
respectively, ODmn

tower represents the tower-based flows from voronoi
polygon m to voronoi polygon n, N is the number of cell phone towers.
In this manner, we could generate human flows between grid cells or
TAZs for each time slot, which would be used to extract the human
convergence-divergence patterns.

The movement matrix can be denoted as (i, j,Cij,Tt)U, where U re-
presents the spatial analysis units, including the voronoi polygon, grid
cell, and TAZ. Cij represents the number of people from spatial unit i to
spatial unit j, and Tt represents the time slot. On the basis of the
movement matrix, we could calculate the inflow for each spatial unit by
summing up the numbers of people arriving at the spatial unit from
other spatial units during time slot Tt; similarly, the outflow of the
spatial unit could be generated by summing up the flows departing from
this spatial unit to other spatial units. The net flow is defined as the
difference between the inflow and the outflow of the spatial unit; a
positive net flow indicates that the number of people in a spatial unit
increases during a time slot, whereas a negative net flow indicates
otherwise. Therefore, net flow is considered as an indicator of the
convergence (positive net flow) or divergence (negative net flow) status
of the spatial unit during time slot Tt (Yang et al., 2016). According to
Fang et al. (2017), the cumulative net flow of a spatial unit in time slot
Ts can be calculated as
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where ns represents the change in the number of people during the time
period from T1 to Ts. Thus, we can generate a time series of cumulative
net flow during the day, denoted as n={n1,n2,⋯,n23}, which is used to
indicate the human convergence–divergence dynamic of the day.

For each spatial unit, we normalize the time series of cumulative net
flow to compare the differences in the human convergence-divergence
of the spatial units (e.g., comparing when the convergence or diver-
gence reaches a maximum or minimum during the day). Normalization
is calculated as

=N n
max n(| |)

,t
t

(3)

where ∣n∣ represents the absolute value of each element in time seriesn
and max() is the maximum function. In this manner, a normalized cu-
mulative net flow time series N={N1,N2,⋯,N23} can be created for
each spatial unit. The normalized time series is convenient for com-
paring the convergence–divergence patterns, and it is appropriate for
the succeeding cluster analysis because the effect of magnitude is
eliminated.

The objective of cluster analysis is to group spatial units with similar
human convergence–divergence pattern into the same class. This study
employs the self-organizing map (SOM) approach to cluster the voronoi
polygons, grid cells, and TAZs according to their time series features.
SOM is an unsupervised neural network-based approach that represents
multidimensional features into a two-dimensional topological space,
which makes cluster analysis feasible to execute for time series or multi-
attribute data that can be characterized by vectors. This approach has
been widely applied to geospatial data to mine hidden knowledge, in-
cluding spatial distribution features and human mobility patterns
(Andrienko et al., 2010; Sagl, Delmelle, & Delmelle, 2014). Therefore,
this study utilizes the SOM approach for the above normalized time
series to cluster the spatial units into different classes according to their
time variation features. Each cluster indicates a distinct human con-
vergence–divergence pattern.

3.2. Multinomial logistic regression

The human mobility patterns that occur in an area depend on the
land function of the place. For example, residential and industrial areas
would produce opposite human mobility patterns. This study employs
MLR to address the relationship between land use characteristics and
human convergence–divergence patterns. This approach, which has
been widely applied to transport geographical analysis, is an extension
of binary logistic regression to handle situations in which the dependent
variables are more than two discrete categories (Jun, Choi, Jeong,
Kwon, & Kim, 2015; Kim, 2018). Generally, the approach needs to se-
lect a class as the reference category and then compares the probability
of other categories with the probability of the reference category. Given
that the number of dependent variables is M, the first variable (Y=0)
is set as the reference group. The probability of each category can be
calculated as

= =
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=
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and the model for each non-reference category can be expressed as
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where M represents the total number of categories; k represents the
non-reference categories; and βi and xi represent the coefficient and
independent variables, respectively. The coefficient is estimated using
maximum likelihood estimation. The coefficient βi indicates the extent
of the influence of independent variable xi on the dependent variable. A
positive value means that the independent variable increases the
probability of the outcome, whereas a negative coefficient means
otherwise.

The MLR model can be used to predict the probability of discrete
dependent variables by some independent variables and to quantify the
differences in the influence of independent variables on different de-
pendent variables. The main objective of this study is to explore the
relationship between human convergence–divergence patterns and land
use characteristics. Therefore, the dependent variables of MLR in this
study are the clusters that extracted human convergence–divergence
patterns in the last section, and the independent variables represent the
land use characteristics in the spatial analysis units, namely, the per-
centages of commercial, industrial, residential, public, and transport
lands. Moreover, the land use mix of each spatial analysis unit is con-
sidered as an independent variable. We employ entropy to quantify the
extent of the mix of different land uses, denoted as Ei. The calculation
formula of land use mix can be found in the work of Tu et al. (2018). In
addition to land use characteristics, we add the distance to nearest
urban centers as an important independent variable because some
studies have found a relationship between human mobility patterns and
distance to urban central business districts (Gan et al., 2018). We utilize
the Euclidean metric to calculate the distance from the center of each
spatial analysis unit to its nearest urban center, denoted as Di.

4. Results and discussion

4.1. Human convergence–divergence patterns

On the basis of the temporal characteristics of human convergence
and divergence, we group the voronoi polygons, grid cells, and TAZs
into eight distinct clusters, which are denoted as C1, C2, C3, C4, C5, C6,
C7, and C8. The number of the clusters is determined according to our
previous research (Yang et al., 2016). Fig. 3 shows the spatial dis-
tribution of the eight distinct human convergence–divergence patterns
for the three spatial units. Some differences can be observed in the
spatial distributions of the clusters among the different types of spatial
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analysis units because of the typical MAUP. This study focuses on
checking whether some common patterns can be identified from the
three different types of spatial analysis units.

Fig. 4 illustrates the centroids of eight clusters for the three spatial
analysis units to show the temporal dynamics of human convergence

and divergence during the day. According to the definition in the work
of Fang et al. (2017), a successive convergence or divergence status for
several time slots can be modeled as a human convergence process
(HCP) or human divergence process (HDP). We apply the two con-
ceptual models to the dynamic curve of each cluster to sketch the

Fig. 3. Spatial distribution of each convergence–divergence dynamic for three spatial units.
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outline of the human convergence-divergence process, which is illu-
strated by the black dashed line in the small inset. When the slope of the
dashed line is greater than zero, it is an HCP; otherwise, it is an HDP.
Although three different kinds of spatial analysis units are used to ex-
tract human convergence–divergence patterns, eight common patterns
are uncovered from the three spatial units to describe human con-
vergence-divergence during the day (Fig. 4). Moreover, some common
characteristics or distinct differences in the human con-
vergence–divergence process could be singled out from the eight pat-
terns. A brief conclusion is provided as follows.

(1) There are no significant convergence-divergence appearing in all
eight clusters from midnight (00:00) to early morning (around
05:00) when most people are asleep. Thus, the whole city is like a
calm sea lying in a status of peace during those periods. After 05:00,
obvious HCPs or HDPs arise in each cluster, indicating that citizens
in Shenzhen have started their commuting activities in the early
morning. The pressure of high housing prices and rent in Shenzhen
(especially in the Futian, Luohu, and Nanshan districts) has caused
many people working in urban centers to but opt to live in urban

suburban areas to relieve their economic burden. Moreover, these
people have to commute long distances for work, making them
early birds.

(2) For clusters C1 and C5, a common feature is that they go through an
analogous W-shaped dynamic process, forming a con-
vergence–divergence alternate sequence: HDP–HCP–HDP–HCP.
Specifically, an HDP occurring from 05:00 to 10:00 and an HCP
after 15:00 indicate that these spatial units may be associated with
urban residential land, where numerous residents disperse from
these areas to workplaces in the morning and return in the after-
noon. In addition, an HCP–HDP dynamic process occurs at noon
(from 10:00 to 14:00) possibly because of lunch activities, leading
to a small fluctuation appearing around 12:00. However, a sig-
nificant difference between C1 and C5 is mainly reflected in the last
HCP (occurring after 15:00 until midnight). The normalized cu-
mulative net flow of C1 achieves approximately 0.5 at midnight,
and the corresponding value of C5 only returns to the original level.
On the contrary, clusters C7 and C8exhibit a reverse W-shaped
dynamic process, namely, an M-shaped process, showing an
HCP–HDP–HCP–HDP alternative sequence. Similarly, the main

Fig. 4. Human convergence–divergence patterns for the three spatial analysis units.
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difference between the two patterns lies in the last HDP after 15:00.
Intuitively, industrial land may be dominant in the spatial analysis
units of both clusters, and further investigation into their land use
characteristics is still needed to determine the specific reason.

(3) As for clusters C2 and C3, an analogous V-shaped dynamic process
is outlined, thereby generating an HDP–HCP alternative sequence
from early morning to midnight. The only difference is that the
fluctuation of C3 is smaller than that of C2. Moreover, the turning
point between HDP and HCP in C3 happens around 09:00 in the
morning, whereas the corresponding turning point in C2 occurs
around 16:00. Conversely, the spatial analysis units in C4 and C6
first attract people from other places and reveal an HCP, followed
by an HDP, which forms an inverted V-shaped dynamic process.
The difference also lies in the time of the turning point; one happens
at 08:00 in the morning, whereas the other takes place at about
17:00.

(4) From the above observation of human convergence–divergence
dynamics, mutual complementary or opposite dynamic processes
are observed among these clusters. For example, clusters C1 and C7
seem to experience an exactly opposite dynamic process. We
speculate that the reason for this phenomenon is strongly related to
the land use characteristics in the spatial analysis units and is the
primary intrinsic motivation of human movement in cities.

4.2. Difference in land use characteristics among convergence–divergence
patterns

For a spatial analysis unit, land use distribution determines its pri-
mary functional property, which further determines the period of oc-
currence of human convergence and divergence and further results in
different human mobility patterns. Therefore, time-dependent human
convergence–divergence patterns are strongly associated with the land
use characteristics within the analysis unit. To drive the intrinsic mo-
tivation of each human convergence-divergence patterns, we use the
MLR approach in quantifying the influence of land use on human
convergence–divergence patterns and compare the main differences in
the land use characteristics among these patterns. By comparing with
the reference category, the approach can distinguish the differences in
land use characteristics between other patterns and referential patterns
by analyzing the logistic regression coefficients.

In this study, cluster C1 is set as the basis of the reference category.
We utilize the boxplot to visualize the characteristics of land use dis-
tribution in this cluster for each type of spatial analysis unit (Fig. 5).
Regardless of the type of spatial analysis unit, the percentages of
commercial and public lands in most spatial units are less than 0.05 and
0.1, respectively. Meanwhile, the percentage of residential land in this
cluster is significantly dominant relative to the percentage of industrial
land, which may be the reason that the cumulative net flow being ne-
gative (W-shaped dynamic outline) during the daytime in this pattern
(Fig. 4). In other words, the sum outflow in these spatial analysis units
continues to be greater than the sum inflow during daytime. In addi-
tion, the entropy values in most of the analysis units are more than 0.7,
which indicates that land use is highly mixed in this cluster. For the
location of the spatial analysis units in this cluster, more than half of the
places are located within 20 km of nearby urban centers. These char-
acteristics may be the primary factors for generating a W-shaped dy-
namic convergence–divergence process in these areas. The next section
investigates the land use characteristics of other clusters by comparing
them with those of this cluster on the basis of the results of the logistic
regression. In addition, the outliers of boxplot may be some units with
extreme value (e.g., land use distribution, mixed entropy or distance)
relative to most units. It can be seen that the number of outliers is
decreasing from voronoi polygons, to Grid cells, to TAZs, which may be
caused by spatial aggregation.

We utilize the statistical software Stata to execute multinomial lo-
gistic regression analysis. Tables 2, 3, and 4 show the regression results

of the explanatory land use variables of each cluster for the three spatial
analysis units. The results of the likelihood-ratio test (Prob> chi-
square) for all three spatial analysis units indicate that the three re-
gression models are significant. The pseudo R2 demonstrates that the
goodness of fit for TAZs is the best and that for the voronoi is the worst,
which may indicate that the spatial aggregation may be a positive effect
on the result of the multinomial logistic regression. In general, the
coefficients are used to explain quantitatively the effects of independent
variables on categorical dependent variables. According to Eq. (5), the
coefficient measures the change of the natural logarithm of the odds
ratio when the corresponding independent variable xi has a unit in-
crease. In this study, a coefficient greater than zero means that a unit
increase in land use would enhance the probability of the con-
vergence–divergence pattern belonging to other clusters versus the re-
ferential cluster C1. Conversely, a value less than zero would decrease
the probability when a unit increase occurs in the independent land use
variable. For the convenience of comparative analysis, we place the
clusters with similar convergence–divergence patterns together to dis-
tinguish their land use characteristics according to the logistic regres-
sion coefficients.

For convergence-divergence pattern with a W-shape, such as clus-
ters C1 and C5, all the coefficients of clusterC5 fail the test of sig-
nificance for TAZs. In addition, commercial and public lands have a
significant negative effect on cluster C5 at the spatial scale of voronoi
polygons, whereas the mixed entropy has a negative effect at the level
of grid cells. This finding demonstrates that the variations in the spatial
scales of the analysis units make a significant difference in the regres-
sion results of cluster C5. The reason may be that land use distributions
for both clusters are highly similar, making most of the coefficients
statistically insignificant. However, transport land has a negative effect

Fig. 5. The boxplot shows the distribution of each independent variable in
cluster C1 for the voronoi polygons, Grid cells, and TAZs.
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on clusterC5 for voronoi polygons and grid cells, thereby indicating that
compared with the case of cluster C1, a unit increase in transport land
of the spatial analysis unit may lead to a decrease in the probability of
appearing in the convergence–divergence pattern of cluster C5.

As for clusters C2 and C3, which show a V-shaped con-
vergence–divergence dynamics, residential land has a significant ne-
gative effect on both clusters for all three spatial analysis units. A unit
increase in residential land would lead to a decrease in the probability
of appearing in pattern C2 and C3 relative to the referential cluster C1.
Compared with cluster C2, commercial land has a significant positive
effect on cluster C3 for the spatial units of the Voronoi polygons and
grid cells (Tables 3 and 4), indicating that the convergence-divergence
process of cluster C3 may likely occur in areas with more commercial
land relative to cluster C2. Commercial land has an appeal to urban
citizens and may thus explain the prolonged HCP occurrence during the
daytime in cluster C3 (Fig. 4). In addition, the significant negative
coefficients of mixed entropy in cluster C3 for voronoi polygons and
grid cells illustrate that the mix of land use in the spatial units of cluster
C3 is less than that in the spatial units of clusters C1 and C2.

For the inverted V-shaped convergence–divergence process of
clusters C4 and C6, a common characteristic is that residential land has
a significant negative effect on the occurrence of both clusters for all
three spatial units, whereas transport land has a positive effect on them.
That is, compared with cluster C1, clusters C4 and C6 tend to appear in
areas with less residential land and more transport land. However, a

distinct difference between both clusters is embodied in commercial
land, which only has a significant positive effect on cluster C4. This
result also explains why intense HCP happens throughout work hours in
this cluster. The mix of land use has a significant negative effect on both
clusters versus cluster C1 at the spatial scale of voronoi polygons and
grid cells. From the absolute value of coefficients, the spatial units of
cluster C4 are less mixed than those of cluster C6.

For clusters C7 and C8, the regression coefficients of land use also
show some similar characteristics. Specifically, industrial and public
lands may have a positive effect on both clusters, thereby indicating
that compared with those of cluster C1, the convergence–divergence
processes of clusters C7 and C8 are more likely to occur at areas with
more industrial and public lands. The significant negative effect of re-
sidential land further demonstrates that the spatial units of clusters C7
and C8 may be dominated by work-related land. Therefore, a similar M-
shaped convergence–divergence process appears in these places
(Fig. 4). Furthermore, the mix of land use in both clusters is sig-
nificantly less than that of cluster C1. However, some differences are
observed between the two clusters, as reflected by commercial and
transport land. Compared with that of cluster C7, the human con-
vergence-divergence process of cluster C8 is more inclined to arise in
areas with more commercial and transport lands.

In addition, the effects of distance from spatial units to nearest
urban centers on human convergence–divergence patterns has no sig-
nificant and unified conclusion, which is inconsistent with Gan et al.

Table 2
Results of multinomial logistic regression of convergence–divergence patterns for Voronoi polygons, with cluster C1 as the reference category.

Number of observation=5860; The likelihood ratio chi-square= 1806.17; Prob> chi-square= 0.000; Pesudo R2= 0.078.

Variables The logistic regression coefficient of each cluster

C2 C3 C4 C5 C6 C7 C8

βi βi βi βi βi βi βi

Commercial 0.045 1.904⁎⁎ 3.903⁎⁎⁎ −2.615⁎⁎⁎ 0.134 1.142 3.711⁎⁎⁎

Industrial −0.454 0.139 0.958⁎⁎ −0.389 −0.092 0.592⁎ 1.686⁎⁎⁎

Residential −2.596⁎⁎⁎ −1.037⁎⁎⁎ −2.304⁎⁎⁎ −0.141 −4.440⁎⁎⁎ −5.074⁎⁎⁎ −4.000⁎⁎⁎

Public 0.753 0.294 1.120⁎⁎ −1.056⁎⁎ 0.331 1.393⁎⁎⁎ 0.958⁎

Transport 0.644 0.851 1.416⁎⁎⁎ −1.997⁎⁎⁎ 0.410⁎ 0.502 1.040⁎⁎

Mixed entropy −1.042⁎⁎ −1.065⁎⁎ −2.102⁎⁎⁎ 0.356 −1.465⁎⁎⁎ −1.342⁎⁎⁎ −1.877⁎⁎⁎

Distance to center −0.004 −0.005 0.016⁎⁎ 0.012⁎⁎ −0.002 −0.002 −0.030⁎⁎⁎

Constant 1.572⁎⁎⁎ 0.744⁎ 1.695⁎⁎⁎ 1.373⁎⁎⁎ 2.071⁎⁎⁎ 1.911⁎⁎⁎ 2.827⁎⁎⁎

⁎ Represents the significance of the regression coefficient at the 0.1 level.
⁎⁎ Represents the significance of the regression coefficient at the 0.05 level.
⁎⁎⁎ Represents the significance of the regression coefficient at the 0.01 level.

Table 3
Results of multinomial logistic regression of convergence–divergence patterns for grid cells, with cluster C1 as the reference category.

Number of observation=2056; The likelihood ratio chi-square= 956.06; Prob> chi-square= 0.000; Pesudo R2= 0.109.

Variables The logistic regression coefficient of each cluster

C2 C3 C4 C5 C6 C7 C8

βi βi βi βi βi βi βi

Commercial −1.922 4.005⁎⁎ 4.076⁎⁎ −2.697 1.144 1.397 4.470⁎⁎

Industrial −1.150⁎ −1.148⁎⁎ 0.393 −1.161⁎⁎ −1.196⁎⁎ 0.043 1.034
Residential −2.905⁎⁎⁎ −3.518⁎⁎⁎ −6.020⁎⁎⁎ −0.185 −7.533⁎⁎⁎ −9.224⁎⁎⁎ −9.576⁎⁎⁎

Public 2.902 2.051 3.499 −0.933 2.644⁎ 4.468⁎⁎⁎ 4.640⁎⁎⁎

Transport 0.288 1.985 0.962⁎ −2.431⁎⁎ 1.257 1.246 2.267⁎

Mixed entropy −1.523 −4.124⁎⁎⁎ −3.237⁎⁎⁎ −2.245⁎⁎ −2.204⁎⁎ −3.252⁎⁎⁎ −3.397⁎⁎⁎

Distance to center −0.009 0.023⁎⁎ −0.018 0.001 0.008 −0.019 −0.004
constant 2.668⁎⁎⁎ 3.503⁎⁎⁎ 3.670⁎⁎⁎ 3.786⁎⁎⁎ 3.892⁎⁎⁎ 3.827⁎⁎⁎ 4.442⁎⁎⁎

⁎ Represents the significance of the regression coefficient at the 0.1 level.
⁎⁎ Represents the significance of the regression coefficient at the 0.05 level.
⁎⁎⁎ Represents the significance of the regression coefficient at the 0.01 level.
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(2018); they found that the distance to urban centers is a significant
factor that affects the ridership profiles of metro stations. The reason
may be that the locations of urban metro stations are fixed, and unlike
mobile phone data, smart card data can only capture the dynamics of
these metro stations and cannot cover the whole area of the city.

In general, the scale of a spatial analysis unit makes a difference in
the results of multinomial logistic regression, which is known as MAUP
in spatial analysis. Compared with those of the spatial units of voronoi
polygons and grid cells, the regression coefficients in some independent
variables for TAZs are statistically insignificant. This result illustrates
that large-scale spatial analysis units may aggregate some subtle dif-
ferences in land use characteristics. Although differences exist in re-
gression coefficients for the three types of spatial analysis units, some
uniform characteristics can be summarized from these three tables. For
example, a unit increase in commercial land would lead to an increase
in the probability of appearing in convergence-divergence patterns C3
(for voronoi ploygons and grid cells, not significant for TAZs), C4 (for
voronoi polygons, grid cells and TAZs) and C8 (for voronoi polygons,
grid cells and TAZs). This indicates that the convergence-divergence
pattern C3, C4 and C8 may likely occur in areas with more commercial
land relative to the referential cluster C1. Therefore, we used up-arrow
to label the three convergence-divergence patterns at the row of com-
mercial land (Table 5). Based on the above discussion, we could draw a
brief conclusion about the effects of change in land use on human
convergence–divergence patterns. We employ up-arrow and down-
arrow to denote the increasing and decreasing of probability in ap-
pearing corresponding human convergence–divergence patterns when
there is an increase in the percentage of certain land use (Table 5).
These conclusions are on the premise of cluster C1 being the referential

category; and the blank indicates that the effect of land use is not sig-
nificant.

5. Conclusion

With the rapid development of information and communication
technologies, the collection of massive human sensing datasets has
become easy, providing valuable resources for the study of human
mobility patterns and their relationship with the urban environment
from a comprehensive space–time perspective. In this study, we aim to
reveal the human convergence–divergence patterns of a city and their
latent land use characteristics. Taking Shenzhen, China as a case study,
we implemented the proposed methodological workflow on three
popular types of spatial scales (cell phone tower-based voronoi poly-
gons, grid cells, and TAZs). Although the spatial analysis units are used
differently, some uniform conclusions can still be drawn from the ex-
perimental results.

First, eight common convergence–divergence dynamic patterns
could be extracted from the three kinds of spatial analysis units via
clustering analysis. By sketching the outline of each pattern using
models of HCP and HDP, distinct characteristics were observed in the
convergence-divergence processes among these patterns. These char-
acteristics were mainly manifested in the alternating numbers and or-
ders of HCP and HDP and the duration of HCP and HDP. In terms of the
shape of convergence-divergence processes, four types of process were
generalized from the eight patterns, namely W-shape (C1 and C5), in-
verted W-shape (C7and C8), V-shape (C2and C3), inverted V-shape
(C4and C6). Among these shape, the first two may be mainly dis-
tributed in urban residential and industrial land respectively, and are
strong related with people's daily home-work routine. For pattern C2,
C4 and C6, they tend to appear in areas with less residential land and
more transport land. C3 is likely to more related with urban commercial
land.

As for land use, the scales of the spatial analysis units exerted some
influence on the results of logistic regression. Nevertheless, some
common effects of land use on the probability of the occurrence of
human convergence–divergence patterns could be summarized from
the three regression results. For example, a unit increase in commercial
land for each spatial analysis unit would enhance the probability of
occurrence of human convergence–divergence patterns C3, C4 and C8.
The percentage of industrial and public land have a significant positive
effect on convergence-divergence pattern C7 and C8. For residential
land, its increase would decrease the probability of appearing in
patternsC2,C3,C4,C6,C7 and C8. The transport land has a significant
negative influence on pattern C5 but is positive related with pattern C4,

Table 4
Results of multinomial logistic regression of convergence–divergence patterns for TAZs, with cluster C1 as the reference category.

Number of observation=855; The likelihood ratio chi-square= 385.45; Prob> chi-square=0.000; Pesudo R2= 0.130.

Variables The logistic regression coefficient of each cluster

C2 C3 C4 C5 C6 C7 C8

βi βi βi βi βi βi βi

Commercial −6.121 −5.905 9.155⁎ −0.676 −0.508 5.200 10.505⁎⁎

Industrial 0.474 0.391 0.870 0.745 0.106 3.281⁎⁎ 2.931⁎⁎

Residential −3.557⁎⁎⁎ −2.902⁎⁎ −9.491⁎⁎⁎ −0.243 −9.457⁎⁎⁎ −10.695⁎⁎⁎ −12.378⁎⁎⁎

Public 0.289 −0.221 4.909 1.848 4.615 5.711 3.763⁎

Transport 4.267⁎⁎ 3.829 4.141⁎⁎ 1.049 3.457⁎⁎ 5.599⁎⁎ 5.398⁎⁎⁎

Mixed entropy −0.059 −2.094 −2.471 −2.354 −1.031 −4.515⁎⁎ −3.929⁎⁎

Distance to center −0.030 0.003 −0.016 −0.034⁎ −0.028 −0.058⁎⁎ −0.044⁎

constant 1.761 2.409⁎ 3.596⁎⁎⁎ 2.333⁎⁎ 2.341⁎⁎ 4.356⁎⁎⁎ 4.938⁎⁎⁎

⁎ Represents the significance of the regression coefficient at the 0.1 level.
⁎⁎ Represents the significance of the regression coefficient at the 0.05 level.
⁎⁎⁎ Represents the significance of the regression coefficient at the 0.01 level.

Table 5
Effects of change in land use on human convergence-divergence patterns. The
up-arrow and down-arrow denote the increasing and decreasing of probability
in appearing corresponding human convergence–divergence patterns when
there is an increase in the percentage of land use, and the blank indicates that
the variation of land use has no significant effect on corresponding con-
vergence–divergence patterns.

Land use C2 C3 C4 C5 C6 C7 C8

Commercial ↑ ↑ ↑
Industrial ↑ ↑
Residential ↓ ↓ ↓ ↓ ↓ ↓
Public ↑ ↑
Transport ↑ ↓ ↑ ↑
Entropy ↓ ↓ ↓ ↓ ↓
Distance
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C6 and C8. Finally, an increase in mixed of land use would generate a
significant negative influence on patterns C3,C4,C6,C7 and C8.

These findings shed light on the relationship between human con-
vergence–divergence patterns and land use distribution. Moreover, the
results could help policy makers understand human mobility and
eventually guide them in urban management and planning. In fact,
convergence-divergence patterns represent the dynamic change of dif-
ference between inflow and outflow over time, which further indicates
the spatiotemporal travel demand of urban residents, thus these find-
ings could help optimize regional traffic planning to meet the dynamic
travel demand of people. In addition, one could have an elementary
knowledge about the characteristic of human convergence–divergence
if the land use planning of a place (such as planning a new district or
rebuilding urban village) is available, which could help adjust the land
use planning.

However, some limitations can still be improved in future studies.
First, this study only analyzed one weekday of human dynamics; further
studies should focus on multiple workdays and compare the differences
in human convergence–divergence patterns between weekdays and
weekends. Second, apart from land use distribution, other impact fac-
tors (e.g., socioeconomic characteristics and accessibility of a place)
should be considered to gain a better understanding of human con-
vergence–divergence. Another important direction for future work is to
predict human mobility patterns on a fine space–time scale in the
context of an urban environment.
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