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Abstract

Background: There is a widening gap between the throughput of massive parallel sequencing machines

and the ability to analyze these sequencing data. Traditional assembly methods requiring long execution

time and large amount of memory on a single workstation limit their use on these massive data.

Results: This paper presents a highly scalable assembler named as SWAP-Assembler for processing

massive sequencing data using thousands of cores, where SWAP is an acronym for Small World Asyn-

chronous Parallel model. In the paper, a mathematical description of multi-step bi-directed graph (MSG)

is provided to resolve the computational interdependence on merging edges, and a highly scalable com-

putational framework for SWAP is developed to automatically preform the parallel computation of all

operations. Graph cleaning and contig extension are also included for generating contigs with high

quality. Experimental results show that SWAP-Assembler scales up to 2048 cores on Yanhuang dataset

using only 26 minutes, which is better than several other parallel assemblers, such as ABySS, Ray, and

PASHA. Results also show that SWAP-Assembler can generate high quality contigs with good N50 size

and low error rate, especially it generated the longest N50 contig sizes for Fish and Yanhuang dataset.
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Conclustions: In this paper, we presented a highly scalable and efficient genome assem-

bly software, SWAP-Assembler. Compared with several other assemblers, it showed very

good performance in terms of scalability and contig quality. This software is available at:

https://sourceforge.net/projects/swapassembler.

Background

To cope with massive sequence data generated by next-generation sequencing machines, a highly

scalable and efficient parallel solution for fundamental bioinformatic applications is important [1,2].

With the help of high performance computing, cloud computing [3,4], and many-cores in GPU [5],

successful scalable examples have been seen in many embarrassingly parallel applications: sequence

alignment [6–8], SNP searching [9, 10], expression analysis [11], etc. However, for tightly coupled

graph related problems, such as genome assembly, a scalable solution is a still a big challenge [12,13].

State-of-the-art trials on parallel assemblers include ABySS [14], Ray [15], PASHA [16], and

YAGA [17–19]. ABySS adopts the traditional de Bruijn graph data structure proposed by Pevzner

et. al. [20] and follows the similar assembly strategy as EULER SR [21] and Velvet [22]. The

parallelization is achieved by distributing k-mers to multi-servers to build a distributed de Bruijn

graph, and error removal and graph reduction are implemented over MPI communication primitives.

Ray extends k-mers (or seeds) into contigs with a heuristical greedy strategy by measuring the

overlapping level of reads in both direction. Based on the observation that the time consuming

part of genome assembly are generating and distributing k-mers, constructing and simplifying the

distributed de Bruijn graph, PASHA concentrates its effort on parallelizing these two stages to

improve its efficiency. However, PASHA allows only single process for each unanimous path, and

this limit its degree of parallelism. In their experiments, ABySS and PASHA take about 87 hours

and 21 hours to assembly the Yoruban male genome with a coverage of 42X.

To avoid merging k-mers on two different servers, which can result in too many small inter-

process messages and the communication latency, YAGA constructs a distributed de Bruijn graph

by maintaining edge tuples in a community of servers. Reducible edges belonging to one unanimous

path are grouped into one server using a list rank algorithm [23], then these unanimous paths are
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reduced locally on separated servers. The complexity of YAGA is bounded by O(n
p ) computing

time, O(n
p ) communication volume, and O(log2(n)) communication rounds, where n is the number

of nucleotides in all reads, and p denotes the number of processors. Due to the fact that the

recursive list ranking algorithm used in YAGA has a memory usage of O(nlogn
p ), this will use large

amount of memory and cause low efficiency.

Our previous work [24] tries to avoid access collision of merging two neighbor edges. In this

work, 1-step bi-directed graph and a computational model named as SWAP are proposed for edge

merging operation. In its experiments, the prototype of edge merging algorithm using SWAP

can scale to 640 cores on both Yeast and C.elegans dataset. However this exploratory work only

focuses on the edge merging operation of genome assembly, some other important problems are not

addressed, for example, contig extension, complexity analysis etc.

The scalability of previous assemblers is affected by the computational interdependence on

merging k-mers/edges in unanimous paths. Sequential assemblers, for example Velvet and SOAP-

denovo, process each path sequentially. Parallel assemblers can process several paths in parallel,

however k-mers/edges sharing one path are merged one by one. SWAP-Assembler resolves the com-

putational interdependence on merging edges sharing the same path with MSG. For each path, at

most half of its edges can be merged concurrently in each round, and merging multiple edges on the

same path can be done in parallel using SWAP computational framework. In Figure 1, the parallel

strategy of SWAP-Assembler is compared with other assemblers using an example of two linked

paths, we can see that a deeper parallelism on edge merging can be achieved by SWAP-Assembler.

In this paper, we present a highly scalable and efficient genome assembler named as SWAP-

Assembler, which can scale to thousands of cores on processing massive sequencing data such as

Yanhuang (500G). SWAP-Assembler includes five fully parallelized steps: input parallelization,

graph construction, graph cleaning, graph reduction and contig extension. Compared with our

previous work, two fundamental improvements have been made for graph reduction. Firstly MSG

is presented as a comprehensive mathematical abstraction for genome assembly. Using MSG and

semi-group theory, the computational interdependence on merging edges is resolved. Secondly, we

have developed a scalable computational framework for SWAP, this framework triggers the parallel

computation of all operations with no interference. In this paper, complexity of this framework

and SWAP-Assembler is also analyzed and proved in detail. In addition, two steps in SWAP-

Assembler are used to improve the quality of contigs. One is graph cleaning, which adopts the
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traditional strategy of removing k-molecules and edges with low frequency, and the other one is

contig extension, which resolves special edges and some cross nodes using a heuristic method.

Experimental results show that SWAP-Assembler can scale up to 2048 cores on Yanhuang dataset

using only 26 minutes, which is the fastest compared with other assemblers, such as ABySS, Ray

and PASHA. Conitg evaluation results confirm that SWAP-Assembler generates good results on

N50 size with lowest error rate for S. aureus and R. sphaeroides datasets. When processing larger

datasets (Fish and Yanhuang) without using external error correction tools, SWAP-Assembler

generates the longest N50 contig sizes of 1309 bp and 1368 bp for these two datasets.

Methods

In this section, our method for genome assembly towards thousands of cores is presented. We

first abstract the genome assembly problem with MSG. Generating longer sequences (contigs) from

shorter sequences corresponds to merging semi-extended edges to full-extended edges in MSG. In

addition, computational interdependence of edge merging is resolved by introducing a semi-group

over a closed edge set Es
∨

0 in MSG. The edge set Es
∨

0 is proved to be a semi-group with respect

to edge merging operation. According to the associativity law of semi-group, the final results will

be the same as long as all edges have been merged regardless of the merging order, thus these edge

merging operations can be computed in parallel.

In order to maximally utilize the potential parallelism resolved by MSG, a scalable SWAP

computational framework is developed. As one edge may be accessed by two merging operations

in two different processes at the same time, a lock-computing-unlock mechanism introduced in [24]

is adopted for avoiding the conflict. For the problems which can be abstracted with semi-group,

the corresponding operations can be done in parallel, and SWAP computational framework can

achieve linearly scale up for these problems.

Based on MSG and SWAP computational framework, SWAP-Assembler is developed with five

steps, including input parallelization, graph construction, graph cleaning, graph reduction, and

contig extension. In the following, we first present MSG and the SWAP computational framework,

then details of SWAP-Assembler’s five steps will be followed.
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Mathematical formulation of genome assembly using MSG

Given a biological genome sample with reference sequence w ∈ Ng, where N = {A, T, C, G}, g = |w|,
a large number of short sequences called reads, S = {s1, s2, ..., sh}, can be generated from the

sequencing machines. Genome assembly is the process of reconstructing the reference genome

sequence from these reads. Unfortunately, the genome assembly problem of finding the shortest

string with all reads as its substring falls into a NP-hard problem [25].

Finding the original sequence from all possible Euler paths cannot be solved in polynomial

time [26]. In real cases, gaps and branches caused by uneven coverage, erroneous reads and repeats

prevent obtaining full length genome, and a set of shorter genome sequences called contigs are

generated by merging unanimous paths instead. Our method focuses on finding a mathematical

and highly scalable solution for the following standard genome assembly (SGA) problem, which is

also illustrated in Figure 2.

Problem of Standard Genome Assembly (SGA)

Input: Given a set of reads without errors S = {s1, s2, ..., sh}
Output: A set of contigs C = {c1, c2, ..., cw}
Requirement: Each contig maps to an unanimous path in the De Bruijn graph constructed from the set

of reads S.

Preliminaries

We first define some variables. Let s ∈ Nl be a DNA sequence of length l. Any substring derived

from s with length k, is called a k-mer of s, and it is denoted by α = s[j]s[j +1] . . . s[j + k− 1], 0 6
j < l− k + 1. The set of k-mers of a given string s can be written as Z(s, k), where k must be odd.

The reverse complement of a k-mer α, denoted by α′, is obtained by reversing α and complementing

each base by the following bijection of M, M : {a→t, t→a, c→g, g→c}. Note that α = α′′.

A k-molecule α̂ is a pair of complementary k-mers {α, α′}. Let m be the partial ordering

relation between the strings of equal length, and αm β indicates that α is lexicographically larger

than β. We designate the lexicographically larger one of two complementary k-mers as the positive
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k-mer, denoted as α+, and the smaller one as the negative k-mer, denoted as α−, where α+ m α−.

We choose the positive k-mer α+ as representative k-mer for k-molecule {α, α′}, denoted as α+,

implying that α̂ = α+ = {α+, α−} = {α, α′}. The relationship between k-mer and k-molecule is

illustrated in Figure 3. The set of all k-molecules of a given string s is known as k-spectrum of s,

and it can be written as S(s, k). Noted that S(s, k) = S(s′, k).

Notation suf(a, l)(pre(a, l), respectively) is used to denote the length l suffix (prefix) of string

a. The symbol ◦ is introduced to denote the concatenation operation between two strings. For

example, if s1 = “abc”, s2 = “def”, then s1 ◦ s2 = “abcdef”. The number of edges attached to

k-molecule α̂ is denoted as degree(α̂). All notations are listed in Table 1.

1-step Bi-directed Graph

Definition 1: 1-step bi-directed graph. The 1-step bi-directed de Bruijn graph of order k for

a given string s can be presented as,

G1
k(s) = {Vs, E

1
s} (1)

In the rest of the paper, 1-step bi-directed de Bruijn graph of order k is abbreviated as 1-step

bi-directed graph. In equation (1), the vertex set Vs is the k-spectrum of s,

Vs = S(s, k) (2)

and the 1-step bi-directed edge set E1
s is defined as follows,

E1
s = {e1

αβ = (α, β, dα, dβ, c1
αβ)|∀α̂, β̂ ∈ S(s, k), suf(α, k − 1) =

pre(β, k − 1) ∧ (α ◦ β[k − 1] ∈ (Z(s, k + 1) ∨ Z(s′, k + 1)))}
(3)

Equations (3) declares that any two overlapped k-molecules can be connected with one 1-step

bi-directed edge when they are consecutive in sequence s or the complementary sequence s′. Here dα

denotes the direction of k-mer α, if α = α+, dα =‘+’, otherwise dα = ‘-’. c1
αβ is the content or label

of the edge, and is initialized with β[k− 1], that is c1
αβ = β[k− 1], and we have suf(α ◦ c1

αβ , k) = β.

Lemma 1. Given two k-molecules α̂, β̂ ∈ S(s, k), there are four possible connections, and for each

type of connection exactly two equivalent 1-step bi-directed edge representations exist,

1. e1
α+β+ = (α+, β+,+,+, c1

α+β+), e1
β−α− = (β−, α−,−,−, c1

β−α−)

2. e1
α+β− = (α+, β−,+,−, c1

α+β−), e1
β+α− = (β+, α−,+,−, c1

β+α−)
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3. e1
α−β+ = (α−, β+,−,+, c1

α−β+), e1
β−α+ = (β−, α+,−,+, c1

β−α+)

4. e1
α−β− = (α−, β−,−,−, c1

α−β−), e1
β+α+ = (β+, α+,+,+, c1

β+α+)

In each type of connection, the first bi-directed edge representation and the second one are equiv-

alent. The first bi-directed edge is associated with k-molecule α̂, and the second one is associated

with β̂. Figure 4 illustrates all four possible connections. For example in figure 4-(a), a positive

k-mer “TAG” points to positive k-mer “AGT” with a label “A”, and the corresponding edge is

e1
TAG AGT = (TAG, AGT, +,+, T ).

Given a set of reads S = {s1, s2, . . . , sh} , a 1-step bi-directed graph derived from S with order

k is,

G1
k(S) = {VS , E1

S} = {
⋃

16i6h

Vsi ,
⋃

16i6h

Esi
1} (4)

Each read si corresponds to a path in G1
k(S), and read si can be recovered by concatenating (k−1)-

prefix of the first k-molecule and the edge labels on the path consisted by S(si, k). As an example,

an 1-step bi-directed de Bruijn graph derived from S = {“TAGTCG”, “AGTCGA”, “TCGAGG”}
is plotted in Figure 5.

Multi-step Bi-directed Graph and Its Properties

Definition 2: edge merging operation. Given two 1-step bi-directed edges e1
αβ =

(α, β, dα, dβ , C1
αβ) and e1

βγ = (β, γ, dβ , dγ , C1
βγ) in a 1-step bi-directed graph, if e1

αβ .dβ = e1
βγ .dβ

and degree(β̂) = 2, we can obtain a 2-step bi-directed edge e2
αγ = (α, γ, dα, dγ , c2

αγ) by merging

edges e1
αβ and e1

βγ , where c2
αγ = c1

αβ ◦ c1
βγ . Using symbol ⊗ to denote edge merging operation

between two bi-directed edges attached to the same k-molecule with the same direction, and the

2-step bi-directed edge is written as,

e1
αβ ⊗ e1

βγ = e2
αγ or e1

γβ ⊗ e1
βα = e2

γα (5)

Two edges e2
αγ and e2

γα in equation (5) are equivalent, indicating it is same to apply edge merging

operation on e1
αβ and e1

βγ , and to apply edge merging operation on e1
γβ and e1

βα. Figure 6 shows an

example on edge merging operation.

Zero edge 0 is defined to indicate all non-existing bi-directed edges. Note that 0 ⊗ ex
αβ = 0,

ex
αβ ⊗ 0 = 0. A z-step bi-directed edge can be obtained by,
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ez
αγ =





ex
αβ ⊗ ey

βγ , if ∃β, ex
αβ 6= 0, ey

βγ 6= 0, z = x + y,

ex
αβ .dβ = ey

βγ .dβ, degree(β̂) = 2
0 otherwise

(6)

Definition 3: Multi-step Bi-directed Graph(MSG). A MSG derived from a read set S =

{s1, s2, . . . , sh}, is written as,

Gk(S) = {VS , ES} = {
⋃

16i6h

Vsi ,
⋃

16j6g

(
⋃

16i6h

Esi
j)} (7)

where g is the length of reference sequence w, Ej
si = {ej

αβ |∀α̂, β̂ ∈ S(si, k)}. A MSG is obtained

through edge merging operations.

Given an x-step bi-directed edge ex
αβ = (α, β, dα, dβ , cx

αβ), if there exists edge ey
γα or ez

βγ satis-

fying ey
γα ⊗ ex

αβ 6= 0 or ex
αβ ⊗ ez

βγ 6= 0, then we call edge ex
αβ as a semi-extended edge, and the

corresponding k-molecule α̂ or β̂ as semi-extended k-molecule. If ex
αβ cannot be extended by

any edge, this edge is called as full-extended edge, and k-molecule α̂ and β̂ are full-extended k-

molecules. In Figure 5 and 6, semi-extended k-molecule and full-extended k-molecule are plotted

with different colors (yellow for semi-extended k-molecules and blue for full-extended k-molecules),

semi-extended edge and full-extended edge are drawn with different lines (broken line for semi-

extended edges and real line for full-extended edges).

Property 1. If the set of full-extended edges in the MSG defined in equation 7 is denoted as E∗
S ,

then the set of labels on all edges in E∗
S can be written as,

L∗S = {cx
αβ |ex

αβ = (α, β, dα, dβ, cx
αβ), ex

αβ ∈ E∗
S} (8)

and we have L∗S = C, C is the set of contigs. The proof is presented in Appendix 1.

Property 2. Edge merging operation ⊗ over the multi-step bi-directed edge set ES
∨

0 is asso-

ciative, and Q(ES
∨

0,⊗) is a semigroup. The proof is presented in Appendix 1.

The key property of 1-step bi-directed graph G1
k(S) is that each read s corresponds to a path

starting from the first k-molecule of s and ending at the last k-molecule. Similarly, each chromosome

can also be regarded as a path. However because of sequencing gaps, read errors, and repeats in

the set of reads, chromosome will be broken into pieces, or contigs. Within a MSG, each contig

corresponds to one full-extended edge in Gk(S), and this has been presented and proved in Property

1. Property 2 ensures that the edge merging operation ⊗ over the set of multi-step bi-directed edges
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has formed a semi-group, and this connects the standard genome assembly (SGA) problem with

edge merging operations in semi-group. According to the associativity law of semi-group, the final

full-extended edges or contigs will be the same as long as all edges have been merged regardless

of the merging order, thus these edge merging operations can be computed in parallel. Finally in

order to reconstruct the genome with a large set of contigs, we need to merge all semi-extended

edges into full-extended edges in semi-group Q(ES
∨

0,⊗).

SWAP computational framework

The lock-computing-unlock mechanism of SWAP was first introduced in our previous work [24],

where no implementation details and complexity analysis is given. In this section, we present the

mathematical description of the problems which can be solved by SWAP, then a scalable compu-

tational framework for SWAP model and its programming interface are presented. Its complexity

and scalability is analyzed in Appendix 3.

Definition 4: small world of operations. Semi-group SG(A,R) is defined on set A with

an associative operation R : A × A → A. R(ai, aj) is used to denote the associative operation

on ai and aj , ai, aj ∈ A. The elements ai and aj , together with the operation R(ai, aj) are

grouped as a small world of the operation R(ai, aj). We denote this small world as [ai, aj ], and

[ai, aj ] = {R(ai, aj), ai, aj}. Activity ACT (A, σ) are given on a semi-group SG(A,R) as the

computational works performed by a graph algorithm, where operation set σ is a subset of R.

In real application, an operation corresponds to a basic operation of a given algorithm. For

example, for MSG based genome assembly application, an operation can be defined as edge merging.

For topological sorting, re-ordering a pair of vertices can be defined as an operation.

For any two small worlds [a1, a2], [b1, b2], where a1 6= b1, a1 6= b2, a2 6= b1, a2 6= b2, the cor-

responding operations R(a1, a2) and R(b1, b2), can be computed independently, thus, there exists

potential parallelism in computing activity induced from the semi-group SG(A,R). We use SWAP

for such parallel computing. The basic schedule of SWAP is Lock-Computing-Unlock. For an

operation R(a, b) in σ, the three-steps of SWAP are listed below:

1. Lock action is applied to lock R(a, b)’s small world [a, b].

2. Computing is performed for operation R(a, b), and the values of a, b are updated accordingly.

In MSG, this corresponds to merging two edges.
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3. Unlock action is triggered to release operation R(a, b)′s small world [a, b].

In SWAP computational framework, all operations σ in activity ACT (A, σ) can be distributed

among a group of processes. Each process needs to fetch related elements, for example a and b,

to compute operation R(a, b). At the same time, this process also has to cooperate with other

processes for sending or updating local variables. Each process should have two threads, one is

SWAP thread, which performs computing tasks using the three-steps schedule of SWAP, and the

other is service thread, which listens and replies to remote processes. In the implementation of our

framework, we avoid multi-threads technology by using nonblocking communication and finite-state

machine in each process to ensure its efficiency.

The activity ACT (A, σ) on set A with operations in σ can be treated as a graph G(σ,A) with

σ as its vertices and A as its edges. Adjacent list is used to store the graph G(σ,A), and a hash

function hashFun(x) is used to distribute the set σ into p subset for p processes, where σ =
p−1⋃
i=0

σi,

and Ai is associated with σi. Note that ACT (A, σ) =
p−1⋃
i=0

ACTi(Ai, σi), which is illustrated in

Figure 7. In Appendix 2, the pseudocodes of SWAP thread and service thread are demonstrated

in Algorithm 1 and Algorithm 2, respectively.

Algorithm 1 describes the three-steps of SWAP computational framework, and Algorithm 2

on remote processers can cooperate with Algorithm 1 for running this schedule. The message

functions, internal functions, and user-defined functions in Algorithm 1 and Algorithm 2 are listed

in Table 2, where user-defined functions can be redefined for user-specific computational problems.

Similar to CSMA/CA in 802.11 protocol [27], Algorithm 1 adapts random backoff algorithm to

avoid lock collision. A variety of backoff algorithms can be used, without loss of generality, binary

exponential backoff [27] is used in SWAP thread. Note that all collided operations in σi share only

one binary backoff, so the cost can be ignored as long as the number of relations in σi is huge.

The complexity and scalability analysis for SWAP computational framework are presented in

Appendix 3. When the number of processes is less than the number of operations in σ, which is

true for most cases, equation (3.8) shows that SWAP computational framework can linearly scale

up with the increasing number of cores. When the number of processes is larger than the number of

operations, according to equation (3.7) the running time will be dominated by the communication

round, which is bounded by log(dmax), where dmax is the diameter of graph G(σ,A).
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Implementation of SWAP-Assembler

Based on MSG and SWAP computational framework, SWAP-Assembler consists with five steps,

including input parallelization, graph construction, graph cleaning, graph reduction, and contig

extension. Complexity analysis of SWAP-Assembler are presented in the end of this section.

Input parallelization

As the size of data generated by next generation sequencing technology generally has hundreds of

Giga bytes, loading these data with one process costs hours to finish [14, 16]. Similar to Ray [15]

and YAGA [18], we use input parallelization to speedup the loading process. Given input reads

with n nucleotides from a genome of size g, we divide the input file equally into p virtual data

block, p is the number of processes. Each process reads the data located in its virtual data block

only once. The computational complexity of this step is bounded by O(n
p ). For E.coli dataset of

4.4G bytes, SWAP-Assembler loads the data into memory in 4 seconds with 64 cores while YAGA

uses 516.5 seconds [18], and for Yanhuang dataset SWAP-Assembler loads the data in 10 minutes

while Ray costs 2 hour and 42 minutes.

Graph construction

This step aims to construct a 1-step bi-directed graph G1
k(S) = {Vs, E

1
s}, where Vs and E1

s are

k-molecule set and 1-step bi-directed edge set. In this step, input sequences are broken into over-

lapping k-molecules by sliding a window of length k along the input sequence. A k-molecule can

have up to eight edges, and each edge corresponds to a possible one-base extension, {A,C, G, T}
in either direction. The adjacent k-molecule can be easily obtained by adding the base extension

to the source k-molecule. The generated graph has O(n) k-molecules and O(n) bi-directed edges

distributed among p processors. Graph construction of 1-step bi-directed graph can be achieved in

O(n
p ) parallel computing time, and O(n

p ) parallel communication volume.

An improvement to our previous work [24] is that the time usage on graph construction is

overlapped with the previous step. As CPU computation and network communication can be

performed when only partial data are loaded from the first step, they can be overlapped and

combined as a pipeline. Computation and communication time used in this step are hid behind

the time used on disk I/O in previous step.
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Graph cleaning

This step cleans the erroneous k-molecules, based on the assumption that the erroneous k-mers

have lower frequency compared with the correct ones [19]. Assuming that the errors are random,

we identify the k-molecules with low frequency as erroneous k-molecules, and delete them from the

vertex set. SWAP-Assembler also removes all edges with low frequency in the 1-step bi-directed

graph, and the k-molecules without any attached edges. The frequency threshold can be set by

users, or our method will calculate it automatically based on the average coverage of k-molecules.

In our case, we prefer 3 ∼ 10% of the average coverage as the threshold depending on the species.

All the operations in this step can be finished in O(n
p ) parallel computation time, and about

60 ∼ 80% of the k-molecules can be removed from our graph.

Graph reduction

In order to recover contigs, all semi-extended edges in MSG need to be merged into full-extended

edges. This task can be defined as edge merging computing activity and denoted as ACT (Es
∨

0, σ)

, where the edge merging operation set σ is,

σ = {(eu
βα, ev

αγ)|eu
βα ⊗ ev

αγ 6= 0, eu
βα, ev

αγ ∈ Es} (9)

in which eu
βα indicates an u-step bi-directed edge connecting two vertices β and α. All semi-extended

edges of Es will be merged into full-extended edges finally.

In order to compute edge merging operations in σi using our SWAP computational framework,

two user-defined functions in Table 2 are described as Algorithm 3 and Algorithm 4 in Appendix

2. For each process, the edge merging step has a computing complexity of O(n
p ), communication

volume of O(n log(log(g))
p ) , and communication round of O(log(log(g))). The proposed methods has

much less computation round of O(loglog(g)) than YAGA with O(log(n)2) [18, 19]. The detailed

complexity analysis is provided in Appendix 4.

Contig extension

In order to extend the length of contigs while maintaining as less errors as possible, three types of

special edges and two type of special vertices are processed in our method.

The first type of special edge is tip edge, which is connected with an terminal vertex and has

a length less than k, where k is the k-mer size. These tip edges are deleted from the graph. The
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second type is self-loop edge, whose beginning vertex and terminal vertex are same. If this vertex

has another edge which can be merged with this self-loop edge, they will be merged, otherwise it

will be removed. The last type is multiple edge, whose two vertices are directly connected by two

different edges. In this case the edge with lower coverage will be removed.

In addition, processing two special vertices can help further improve the quality of contigs. The

first is cross vertex shown in Figure 8-(e), which has more than two edges on both sides. For each

cross vertex, we sort all its edges according to their coverage. When the coverage difference between

the two edges is less than 20%, then these two edges are merged as long as they can be merged

regardless of other edges. The second vertex is virtual cross vertex shown in Figure 8-(f). We treat

edge e0 with its two end vertices as one virtual vertex A∗, and A∗ has more than two edges on both

sides. All its edges are ranked according to their coverage. When the coverage difference between

two edges on different nodes is less than 20%, these two edges will be merged with the edge e0

regardless of other edges. By processing these two special vertices using the heuristic method, we

can partly resolve some of the repeats satisfying our strict conditions at the cost of introducing

errors and mismatches into contigs occasionally.

The graph reduction step and contig extension step need to be iterated in a constant number

of rounds to extend full-extended edges or stop when no special edges and special vertices can

be found. The number of errors and mismatches introduced in contigs can be controlled by the

percentage of special edges and vertices processed in contig extension stage. In our method, we

process all edges and vertices aiming at obtaining longer contigs. The computing complexity for

contig extension step will be bounded by O(n
p ). As the graph shrinks greatly after graph reduction

and contig extension step, all the remaining edges are treated as contigs.

The complexity of SWAP-Assembler is dominated by graph reduction step, which is bounded

by O(n
p ) parallel computing time, O(n·log(log(g))

p ) communication volume, and O(log(log(n))) com-

munication round. According to complexity analysis results of graph reduction step in equation

(4.3), when the number of processors is less than the length of longest path dmax, the speedup of

SWAP-Assembler can be calculated as follows,

Speedup =
n

RunTime
=

p

bL log(3cq · log(g)) + rS + 1
(10)

Equation (10) indicates that, for a given genome with fixed length g, the speedup is proportional

to the number of processors; while for a given number of processors p, the speedup is inversely
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proportional to logarithm of the logarithm of the genome size g. However when the number of

processors is larger than the length of longest path dmax, the running time will be bounded by the

number of communication round, which is presented in equation (4.1) in Appendix 4. In either

situation, we can conclude that the scalability or the optimal number of cores will increase with

larger genomes.

Results

SWAP-Assembler is a highly scalable and efficient genome assembler using multi-step bi-directed

graph (MSG). In this section, we perform several computational experiments to evaluate the scala-

bility and assembly quality of SWAP-Assembler. In the experiments, TianHe 1A [28] is used as the

high performance cluster. 512 computing nodes are allocated for the experiment with 12 cores and

24GB memory on each node. By comparing with several state-of-the-art sequential and parallel

assemblers, such as Velvet [22], SOAPdenovo [29], Pasha [16], ABySS [14] and Ray [15], we evaluate

the scalability, quality of contigs in terms of N50, error rate and coverage for SWAP-Assembler.

Experimental data

Five datasets in Table 3 are selected for the experiments. S. aureus, R. sphaeroides and human

chromosome 14 (Hg14) datasets are taken from GAGE project [30], Fish dataset is downloaded

from the Assemblathon 2 [31,32], and Yanhuang dataset [33] is provided by BGI [34].

Scalability evaluation

The scalability of our method is first evaluated on a share memory machine with 32 cores and

1T memory. Five other assemblers including Velvet, SOAPdenovo, Pasha, ABySS and Ray, are

included for comparison. Only the first three small datasets in Table 3 are used in this test due

to the memory limitation. The results are presented in Table 4, and the corresponding figures are

plotted in Figure 9. According to Table 4, SWAP-Assembler has the lowest running time on all

three datasets for 16 cores and 32 cores, and SOAPdenovo has the lowest time usage on 4 cores

and 8 cores. According to Figure 9, SOAPdenovo, Ray and SWAP-Assembler can scale to 32

cores, however Pasha and ABySS can only scale to 16 cores. Figure 9 also shows that Ray and

SWAP-Assembler can achieve nearly linear speedup and SWAP-Assembler is more efficient than

Ray.
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The time usage for each step of SWAP-Assembler on the share memory machine is also presented

in Table 5 and Figure 10. The input parallelization step is overlapped with graph construction,

thus we treat these two steps as one in this experiment. According to Table 5, for all three datasets

the most time-consuming step is graph reduction, and the fastest steps are graph cleaning and

contig extension. Figure 10 shows that input parallelization & graph construction, graph cleaning

and graph reduction can achieve nearly linear speedup when the number of cores increases from 4

to 32 cores, whereas the contig extension step does not benefit as much as other steps.

To further evaluate the scalability of SWAP-Assembler from 64 to 4096 cores on TianHe 1A,

we have compared our method with two parallel assemblers, ABySS and Ray, and the results are

included in Table 6. According to Table 6, SWAP-Assembler is 119 times and 73 times faster than

ABySS and Ray for 1024 cores on the S. aureus dataset. On the same dataset, ABySS and Ray

cannot gain any speedup beyond 64 and 128 cores, respectively. However SWAP-Assembler scales

up to 512 cores. For the R. sphaeroides dataset, ABySS, Ray, and SWAP-Assembler can scale up

to 128, 256, and 1024 cores, respectively.

For three larger datasets, Table 6 shows that scalability of SWAP-Assembler is also better than

the other two methods. On Hg14 dataset, SWAP-Assembler is 280 times faster than ABySS, and

38 times faster than Ray when using 1024 cores. Similar to the results on R. sphaeroides dataset,

three assemblers still hold their turning point of scalability at 128, 256 and 1024 cores, respectively.

Fish and Yanhuang dataset cannot be assembled by ABySS and Ray in 12 hours, so their running

times are not recorded in Table 6. For 1024 cores, SWAP-Assembler assembles Fish dataset in 16

minutes, while it takes 26 minutes with 2048 cores to assemble the Yanhuang dataset. The speedup

curves of SWAP-Assembler on processing five datasets are shown in Figure 11. It shows that the

speedup of assembling two small datasets have a turning point at 512 cores, and linear speedup to

1024 cores is achieved for other three larger datasets. SWAP-Assembler can still benefits from the

increasing cores up to 2048 cores on processing Yanhuang dataset.

Memory footprint is a bottleneck for assembling large genomes, and parallel assemblers is a

solution for large genome assembly by using more memory on the computational nodes. For our

case, Fish and Yanhuang genome assembly needs 1.6T bytes and 1.8T bytes memory, respectively.

As in Tianhe 1A each server has 24G memory, Fish genomes cannot be assembled on a cluster with

64 servers. The same reasoning applies to Yanhuang dataset.

SWAP-Assembler has better scalability compared with Ray and ABySS due to two important
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improvements. Firstly, computational interdependence of edge merging operations on one single

unanimous path is resolved by MSG. Secondly, SWAP computational framework can trigger parallel

computation of all operations without interference, and the communication latency is hidden by

improving the computing throughput. Ray and ABySS cannot merge the k-mers in a single linear

chain in parallel, and PASHA can only parallelize the k-mer merging work on different chains,

which limits their degree of parallelism.

Assembly quality assessment

This part evaluate the assembly quality of SWAP-Assembler. To be compatible with the comparison

results from GAGE, we follow the error correction method of GAGE. ALLPATH-LG [35] and

Quake [36] are used to correct errors for S. aureus and R. sphaeriodes datasets. The corrected

reads are used as the input to ABySS, Ray and SWAP-Assembler. In addition, two other sequential

genome assemblers, Velvet and SOAPdenovo, are selected in this experiment for comparison, and

a machine with 1TB memory is used. The k-mer size for all assemblers varies between 19 and

31, and best assembly results from the experiments of different k-mer sizes for each assembler are

reported in Table 7 and Table 8.

Table 7 presents the results of four metrics for evaluation: the number of contigs, N50, number

of erroneous contigs and error-corrected N50. Error-corrected N50 is used to exclude the misleading

assessment of larger N50 by correcting erroneously concatenated contigs. Each erroneous contig is

broken at every misjoin and at every indel longer than 5 bases. From Table 7, SWAP-Assembler

generates 3 and 7 error contigs on S. aureus and R. sphaeriodes datasets, respectively, which are

the smallest compared with other assemblers. N50 size and error-corrected N50 size for SWAP-

Assembler are also longer than two other parallel assemblers, Ray and ABySS. SOAPdenovo has

minimal number of contigs and largest N50 size for both datasets.

Table 8 summarizes the statistics of contigs generated for these two datasets. Three metrics

in [30] are used to evaluate the quality of the contigs. In this table, “assembly size” close to

its genome size is better. Larger “chaff size” can be indicative of the assembler being unable to

integrate short repeat structures into larger contigs or not properly correcting erroneous bases.

Coverage can be measured by the percentage of reference bases aligned to any assembled contig,

which is “100%-Unaligned ref bases” [30]. SWAP-Assembler and Ray both have the smallest chaff

size of 0.13% on R. sphaeroides dataset, and they show very close coverage and assembly sizes. In
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terms of S. aureus dataset, Ray has a lower chaff size of 0.10% compared with SWAP-Assembler,

however, SWAP-Assembler generates better assembly size of 99.3% and larger coverage of 99.2%.

We also analyzed the contig statistics for three larger datasets and the results are presented

in Table 9. Because these datasets do not have a standard reference set and the original script

provided by GAGE requires a reference set, we wrote a script to analyze the assembly results using

the number of contigs, N50 size, max length of contigs and bases in the contigs for evaluation.

The original data of three datasets are directly processed by five assemblers with a fixed k-mer

size of 31. According to Table 9, the N50 size of contigs generated by SWAP-Assembler is longest

for all three datasets. For Fish and Yanhuang datasets, SWAP-Assembler also performs best in

the number of contigs and max length of contigs. However for SWAP-Assembler on Hg14 dataset,

whose reads are extracted from the human dataset by mapping the human chromosome 14, the

number of contigs, max length of contigs and bases in contigs have a rank of second, third, and

second, respectively. SWAP-Assembler has a best N50 size for all datasets. This is because it has

efficient graph cleaning and contig extension steps, which can handle sequencing errors efficiently.

Four other assemblers, without the help from external tools on error correction, are affected by the

quality of input reads on larger datasets.

In conclusion, SWAP-Assembler is a highly scalable and efficient genome assembler. The evalu-

ation shows that our assembler can scales up to 2048 cores, which is much better than other parallel

assemblers, and the quality of contigs generated by SWAP-Assembler is the best in terms of error

rate for several small datasets and N50 size for two larger data sets.

Conclusion

In this paper, SWAP-Assembler, a fast and efficient genome assembler scaling up to thousands of

cores, is presented. In SWAP-Assembler, two fundamental improvements are crucial for its scalabil-

ity. Firstly, MSG is presented as a comprehensive mathematical abstraction for genome assembly.

With MSG the computational interdependence is resolved. Secondly, SWAP computational frame-

work triggers the parallel computation of all operations without interference. Two additional steps

are included to improve the quality of contigs. One is graph cleaning, which adopts the traditional

methods of removing k-molecules and edges with low frequency, and the other is contig extension,

which resolves special edges and some cross nodes with a heuristic method. Results show that

SWAP-Assembler can scale up to 2048 cores on Yanhuang dataset using only 26 minutes, which
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is the best compared to other parallel assemblers, such as ABySS and Ray. Conitg evaluation

results confirm that SWAP-Assembler can generate good results on contigs N50 size and retain

low error rate. When processing massive datasets without using external error correction tools,

SWAP-Assembler is immune from low data quality and generated longest N50 contig size.

For large genome and metagenome data of Tara bytes, for example the human gut microbial

community sequencing data, highly scalable and efficient assemblers will be essential for data anal-

ysis. Our future work will extend our algorithm development for massive matagenomics dataset

with additional modules.

The program can be downloaded from https://sourceforge.net/projects/swapassembler.
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Figures
Figure 1 - Parallel strategy comparison on k-mers/edges merging for different assemblers.

Two linked paths with 3 nodes and 5 nodes are given as an example, merging a linked path with

3 nodes needs 2 operations/rounds, and merging a path with 5 nodes needs 4 operations/rounds.

To assemble these two paths, sequential assemblers need 6 operations, and parallel assemblers need

4 rounds. For SWAP-Assembler different processes can merge several edges on the same path in

parallel using the SWAP computational framework, and merging of these 2 paths can be finished in

2 rounds. For a given sequencing data, if we treat the sequencing coverage as an constant number,

the upper bound of the three assembly strategies on merging k-mers/edges are bounded by O(g),

O(log(g)), and O(log(log(g))) respectively, here g denotes the genome size and the longest path for

a genome of length g will be bounded by O(log(g)). The upper bound of edge merging operations

in SWAP-Assembler and expected length of longest path are proved in Appendix 3.

Reference of the k-mers merging strategy for these assemblers can be found in

their papers or codes. For velvet 1.1.04, the k-mers merging method can be found

in its code “./src/concatenatedGraph.c”; for SOAPdenovo-V1.05, its method is in the

code “./src/31mer/contig.c”; for ABySS 1.3.5, the method can be found in “./Paral-

lel/NetworkSequenceCollection.cpp”; for YAGA, the method has been described in the last para-

graph in the methods section [18]; for Pasha, its method is presented in the last paragraph at the

graph simplification subsection [16].
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Figure 2 - The whole process of genome assembly and the standard genome assembly (SGA)
problem.
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Figure 3 - Each k-molecule consists of one positive k-mer and one negative k-mer.

Figure 4 - The illustration of four possible connections.

(a) Connection type 1 (b) Connection type 2

(c) Connection type 3 (d) Connection type 4

Figure 5 - An example of 1-step bi-directed graph. Here semi-extended k-molecules are colored
with yellow, and semi-extended edges are plotted with dashed line.

Figure 6 - An example for edge merging operation.
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Figure 7 - Illustration of the distribution of an activity ACT (A, σ) on a cluster using SWAP
computational framework.

Operation set σ is distributed over p processors, here σ =
p−1⋃
i=0

σi,
p−1⋂
i=0

σi = 0 and ACT (A, σ) =

p−1⋃
i=0

ACTi(Ai, σi).

Figure 8 - Two type of special vertex defined in contig extension step.

(e) Cross vertex (f) Virtual cross vertex

Figure 9 - Time usage comparison on a share memory machine for three small datasets. (Time
unit: seconds in logarithmic scale)

In this test, the length of k-mer for all assemblers is set to be 31 and the k-mers cutoff threshold is

set to 3. For the three datasets, the sequencing data filtered by ALLPATH-LG is their input data.

The time usage is recorded until the contig is generated. The horizontal axis is marked with the

name of assemblers and the number of cores used.
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Figure 10 - Time usage details of SWAP-Assembler’s five steps on processing three small
datasets using a share memory machine with 32 cores. (Time unit: seconds in logarithmic
scale)

In this test, the length of k-mer for SWAP-Assembler is set to be 31 and the k-mers cutoff threshold

is set to 3. For the three datasets, the sequencing data filtered by ALLPATH-LG is their input

data. The horizontal axis is marked with the name of datasets and the number of cores used.
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Figure 11 - Linear speedup of SWAP-Assembler on processing five datasets.
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Tables
Table 1 - List of Notations.

Definition Notation Example
set of nucleotides N N = {A, T,C, G}
reference se-
quence

w w = “TAGTCGAGG”

read set S S = { “TAGTCG”, “AGTCGA”, “TCGAGG” }
k-mer α or α′ α = “TAG”, α′ = “CTA”
positive k-mer α+ α+ = “TAG”
negative k-mer α− α− = “CTA”
representative k-
mer

α+ α+ = “TAG”

k-molecule α̂=α+ =
{α+, α−}

α̂ = {“TAG”, “CTA”}

set of k-mers Z(s, k) Z(“TAGTCG”, 3) ={“TAG”,“AGT”,“GTC”,“TCG”}
set of k-molecules S(s, k) Z(“TAGTCG”, 3) = {{“TAG”, “CTA”}, {“AGT”, “ACT”},

{“GTC”, ”GAC”}, {“TCG”, “CGA”}}

Table 2 - Description of message functions, internal functions, and user-defined functions used
in Algorithm 1 and 2.

Class Function Name Function Description

Message Functions

Msg Lock(a, p) Lock a in process p
Msg Unlock(a, p) Unlock a in process p
Msg Read(a, p) Fetch associated values of a
Msg Write(a, newa, p) Update associated values of a with newa
Msg Locksuccess(a, R(a, b), p) Send Locksuccess Message back to R(a, b)
Msg Lockfailed(a, R(a, b), p) Send Lockfailed Message back to R(a, b)
Msg ReadBack(a, R(a, b), p) Send associated value of a back to R(a, b)
Msg End() Command to stop the service thread

Internal Functions proc(a) Get process ID of a
trylock(a) Lock a
unlock(a) Unlock a

User-defined Functions GetSmallWorld( R(a, b) ) Get small world [a, b] from operation R(a, b)
Operation(a,b) Compute the operation R(a, b)

Table 3 - Details about the five short read datasets.

- S. aureus R. sphaeroides Hg14 Fish YanHuang
fastq data size (Gbytes) 0.684 0.906 14.2 425 495
read length (bp) 37, 101 101 101 101 80-120
no. of reads (million) 4.8 4.1 62 1910 1859
coverage 90X 90X 70X 192X 57X
reference size (Mbp) 2.90 4.60 88.6 1000 3000
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Table 4 -Time usage results of three small datasets on a share memory machine with 32 cores.
(Time unit: seconds)

assembler cores S. aureus R. sphaeroides Hg14
Velvet 1 159 265 5432

SOAPdenovo

4 44 71 1004
8 44 69 933
16 36 57 742
32 38 45 582

Pasha

4 215 342 5494
8 159 255 3938
16 147 255 3436
32 183 289 4852

ABySS

4 174 302 4138
8 146 234 3079
16 139 226 2588
32 147 235 2596

Ray

4 1247 1778 24145
8 707 1050 13116
16 454 688 7222
32 351 467 4235

SWAP-Assembler

4 81 129 2167
8 42 69 1187
16 24 38 685
32 13 21 408

Table 5 - Time usage details of SWAP-Assembler’s five steps on processing three small datasets
using a share memory machine with 32 cores. (Time unit: seconds)

steps 4 cores 8 cores 16 cores 32 cores

S. aureus

input parallelization & graph construction 31.29 16.32 9.55 4.91
graph cleaning 2.14 1.07 0.6 0.3
graph reduction 45.75 24.2 13.23 7.67
contig extension 1.54 0.89 0.6 0.52

R. sphaeroides

input parallelization & graph construction 49.19 26.42 14.88 7.79
graph cleaning 3.63 1.99 0.97 0.54
graph reduction 73.78 39.31 20.83 12.19
contig extension 2.37 1.33 0.85 0.64

Hg14

input parallelization & graph construction 628 327 184 98
graph cleaning 71 37 19 10
graph reduction 1328 734 413 242
contig extension 140 89 69 58
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Table 6 - Scalability evaluation on parallel assemblers. (Time unit: seconds)

This table records the time usage on assembling all five datasets with different number of cores,

and the length of k-mer is set to be 23. For ABySS and Ray, the time is recorded until contigs are

generated.

dataset software 64 128 256 512 1024 2048 4096

S. aureus (2.87Mb)
ABySS 248 269 334 554 831 -1 -
Ray 244 198 202 266 510 - -
SWAP-Assembler 23 15 8 5 7 13 -

R. sphaeroides (4.60Mb)
ABySS 492 454 522 718 1312 - -
Ray 287 183 181 190 285 - -
SWAP-Assembler 43 29 15 7 7 7 -

Hg14 (88.29Mb)
ABySS 6472 5299 6935 9045 16530 - -
Ray 2926 1746 1288 1517 2266 - -
SWAP-Assembler 585 428 203 128 59 67 -

Fish (1Gb)
ABySS * 2 + 3 + + + - -
Ray * + + + + - -
SWAP-Assembler + 13941 8622 3263 962 971 2582

Yanhuang (3Gb)
ABySS * + + + + - -
Ray * + + + + - -
SWAP-Assembler * 11243 5761 4021 1783 1608 1778

1 − denotes assembler with this parameter has not been tested.
2 ∗ denotes assembler with this parameter has run out of memory.
3 + denotes assembler with this parameter has run out of time, the time limit is 12 hours.

Table 7 - Assembly results of S. aureus and R. sphaeriodes datasets.

software S. aureus Contigs R. sphaeroides Contigs
Num N50(kb) Errors N50 corr. (kb) Num N50(kb) Errors N50 corr.(kb)

Velvet 162 48.4 28 41.5 583 15.7 35 14.5
SOAPdenovo 107 288.2 48 62.7 204 131.7 414 14.3
ABySS 302 29.2 14 24.8 1915 5.9 55 4.2
Ray 221 36.6 15 35.6 752 11.5 17 11.2
SWAP-Assembler 183 51.1 3 37.8 529 16.2 7 12.3

Table 8 - Contig statistics on the assembly results of S. aureus, R. sphaeroides datasets. (Unit:
Percentage (%)
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dataset software Assembly Chaff Unalign Unalign Duplicate Compress
size size ref bases asm bases ref bases ref bases

Velvet 99.2 0.45 0.79 0.03 0.10 1.28
SOAPdenovo 101.3 0.35 0.38 0.01 1.44 1.41

S. aureus ABySS 127.0 66.00 1.37 <0.01 23.30 0.99
(2.9 Mb) Ray 98.4 0.10 0.88 0.04 0.08 1.26

SWAP-Assembler 99.3 0.28 0.80 0.02 1.29 1.45
Velvet 97.8 0.54 1.60 0.01 0.29 0. 92
SOAPdenovo 99.9 0.45 0.88 0.02 1.07 0.51

R. sphaeroides ABySS 108.0 1.65 3.01 0.15 10.04 0.04
(4.6 Mb) Ray 99.0 0.13 1.03 <0.01 0.27 0.73

SWAP-Assembler 99.1 0.13 1.08 0.11 0.83 0.75

Table 9 - Contig statistics of Hg14, Fish and Yanhuang datasets.

dataset software contigs
Num N50 (bp) Max (bp) BasesInContig (Mbp)

Velvet 90,784 1688 25,729 83.3
SOAPdenovo 200,153 836 21,144 96.4

Hg 14 ABySS 190,693 1914 26,697 107.4
(88.3 Mb) Ray 76,950 964 14,399 68.4

SWAP-Assembler 88,609 2036 21,246 96.4
Velvet - - - -
SOAPdenovo 3291290 378 7181 1,134.4

Fish ABySS - - - -
(1Gb) Ray - - - -

SWAP-Assembler 2881443 1309 35,962 1,097.9
Velvet - - - -
SOAPdenovo 8,584,515 841 23,782 3396.2

Yanhuang ABySS 9,218,967 1059 24,428 3691.8
(3Gb) Ray 3,755,103 266 6,765 1620.1

SWAP-Assembler 2,379,151 1368 31,152 2434.3
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Appendix 1 — Property proof of MSG

Property 1. If the set of full-extended edges in the MSG defined in equation (7) is denoted as

E∗
S , then the set of labels on all edges in E∗

S can be written as,

L∗S = {cx
αβ |ex

αβ = (α, β, dα, dβ, cx
αβ), ex

αβ ∈ E∗
S}

and we have L∗S = C, C is the set of contigs.

Proof . (1). ∀a ∈ C, a is a contig. Each contig maps to an unanimous path Pa in 1-step

bi-directed graph G1
k(S) = {VS , E1

S}. Let Pa = t1t2 . . . tm, where ti ∈ VS , t1, tm are full-extended

k-molecules, and the ones in between are semi-extended k-molecules, then we have e1
t1t2 ⊕ e1

t2t3 ⊕
e1
t3t4 ⊕ . . . ⊕ e1

tm−1tm = em−1
t1tm . As t1, tm are full-extended k-molecules, then em−1

t1tm is full-extended

edge, em−1
t1tm ∈ E∗

S . The contig a can be recovered by concatenate labels of all 1-step bi-directed

edges along the path Pa, and that’s cm−1
t1tm , so a = cm−1

t1tm ∈ L∗S .

(2). ∀em−1
t1tm = {t1, tm, dt1 , dtm , cm−1

t1tm } ∈ E∗
S , here cm−1

t1tm ∈ L∗S . This full-extended edge em−1
t1tm

corresponds to one path Pa in the original 1-step bi-directed graph. With no loss of generality,

let Pa = t1t2 . . . tm, and t2, t3, . . . tm−1 are semi-extended k-molecules, t1, tm are full-extended k-

molecules. Clearly this path Pa is an unanimous path, which will corresponds to a contig. In SGA

problem, we can recover this contig by concatenating the labels along the path, and this will be

cm−1
t1tm , finally we get cm−1

t1tm ∈ C.

To combine the conclusions of (1) and (2), we have L∗S = C.

Property 2. Edge merging operation ⊗ over the multi-step bi-directed edge set ES
∨

0 is associa-

tive, and Q(ES
∨

0,⊗) is a semigroup.

Proof . For any three multi-step bi-directed edge ex
ab, ey

cd and ez
ef in ES

∨
0,

Case 1. if ex
ab ⊗ ey

cd ⊗ ez
ef 6= 0, then (ex

ab ⊗ ey
cd)⊗ ez

ef = ex
ab ⊗ (ey

cd ⊗ ez
ef ) = ex+y+z

af .

Case 2. if ex
ab ⊗ ey

cd ⊗ ez
ef = 0, then (ex

ab ⊗ ey
cd)⊗ ez

ef = ex
ab ⊗ (ey

cd ⊗ ez
ef ) = 0.

So edge merging operation ⊗ is associative, and Q(ES
∨

0,⊗) is a semigroup.
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Appendix 2 — Algorithms for SWAP-Assembler

Algorithm 1: Pseudocode of SWAP
thread

Input: The activity ACTi(Ai, σi).
Output: A∗i
begin

while σi 6= Φ do
for R(a, b) in σi do

if trylock(a) 6= Locksuccess or
trylock(b) 6= Locksuccess then

unlock(a);
unlock(b);
continue;

end
[a,b] ← GetSmallWorld((a, b));
Replya ← Msg Lock(a, proc(a));
Replyb ← Msg Lock(b, proc(b));
if Replya 6= Locksuccess or
Replyb 6= Locksucess then

if Replya = Locksuccess
then

Msg Unlock(a, proc(a)) ;
end
if Replyb = Locksuccess
then

Msg Unlock(b, proc(b)) ;
end
unlock(a);
unlock(b);
continue;

end
Recva ← Msg Read(a, proc(a));
Recvb ← Msg Read(b, proc(b);
(Recva, Recvb) ←
Operation(Recva, Recvb);
Msg Write(a,Recva, proc(a));
Msg Write(b,Recvb, proc(b));
Msg Unlock(a, proc(a));
Msg Unlock(b, proc(b));
σi ← σi - R(a, b);

end
Wait for a random backoff time;

end
end

Algorithm 2: Pseudocode of Service
thread

Input: Subset Ai

begin
while true do

Receive a message Msg to a from
Operation R(a, b) at ProcID;
if Msg = Msg Lock then

if trylock (a) = success then
Msg Locksuccess(a,R(a, b), P rocID);
continue;

end
Msg Lockfailed(a,R(a, b), P rocID);
continue;

end
if Msg = Msg Unlock then

unlock(a) ;
continue;

end
if Msg = Msg Read then

Msg ReadBack(a,R(a, b), P rocID)
;
continue;

end
if Msg = Msg Write then

x ← y;
continue;

end
if Msg = Msg End∗ then

break;
end

end
end
* When all SWAP threads finish, process 0
will broadcast an End message to stop all
Service threads.
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Algorithm 3: Pseudocode of GetSmall-
World(R(a,b))

Input: R(eu
βα, ev

αγ)
Output: small world [eu

βα, ev
αγ ]

begin
[eu

βα, ev
αγ ] ← {R(eu

βα, ev
αγ)∗, eu

βα, ev
αγ } ;

return [eu
βα, ev

αγ ];
end
* R(eu

βα, ev
αγ) is the operation of two edges.

Algorithm 4: Pseudocode of
Operation(a, b)

Input: eu
βα, ev

αγ

begin
eu+v
βγ ← eu

βα ⊗ ev
αγ ;

eu+v
γ′β′ ← ev

γ′α′ ⊗ eu
α′∗β′ ;

delete k-molecule α ;
end
* α′ is the reverse complement of k-mer α.

Appendix 3 — Complexity Analysis of SWAP computational framework

In this section, the complexity of SWAP computational framework is analyzed. We first assumes

the used cluster with following components:

1. A number of computing nodes, with each having a processing unit and local memory.

2. A router that delivers point to point messages between pairs of computing nodes.

The main cluster specifications are listed as follows:

L: An upper bound on the latency, or delay, incurred in communication of 1 unit data by a

point to point message,

S: The startup cost, or the latency on putting a message from the memory to the cable,

p: The number of computing nodes.

We make the following assumptions on computing activity ACT (A, σ):

1. The number of operations in σ is m. Operations in σ are randomly distributed over p

computing components, so |σi| ≈ m/p,

2. The number of elements in A is e. Elements in set Ai, which are associated with σi, are

stored on i-th computing components, and |Ai| ≈ e/p,

3. Each message incurs a latency of L per bit with a startup time of S seconds. In Algorithm 1

and 2, messages can be classified into two categories, command message and data message.

Command message includes Lock, Unlock and the reply message of Lock, and data message

includes Read, Write and the reply message of Read. The total data communication volume

transmitted by data message is denoted as z. As a command message has a fix length, the

command data are ignored to simplify our analysis,
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4. Each operation in σ needs a computing time of H, Which is the computing complexity of

user-defined function Operation(a, b),

5. For a graph G(σ,A), the maximum diameter of all connected components of this graph is

noted as dmax.

According to assumptions 1 and 2, the memory usage for each computing component is O(m+e
p ).

When the number of computing nodes p is far less than m which is true for most applications, the

running time is dominated by the computing time and communication time,

RunTime = CompTime + CommTime (3.1)

Computing each operation in σi involves r number of command/data message communication,

where r is a number between 4 and 12 in Algorithms 1 and 2. The startup time for each computing

nodes is given by,

StartTime =
rmS

p
. (3.2)

To simplify our analysis, it is assumed that the total data volume z is evenly transmitted by every

computing nodes. The transition time is given by,

TranTime =
z
p
× L (3.3)

Combining equations (3.2) and (3.3), the communication time per computing node can be

described as,

CommTime = StartTime + TranTime =
rmS +zL

p
(3.4)

According to assumption 1 and 4, each computing nodes has m/p operations. If each operation

needs a computing time of H, the computing time is,

CompTime =
m

p
×H (3.5)

With equations (3.4) and (3.5), the running time per computing node can be written as,

RunTime = rmS+zL+mH
p (3.6)

When the number of computing nodes is close to or even larger than m, RunTime follows

different equation rather than equation (3.6). For most applications, all the operations in σ cannot
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Figure 3.1 - An example for a given list of operations taken from activity ACT (A,⊕). A =
{a1, a2, . . . , a8}, and ACT (A,⊕) = {(a1, a2), (a2, a3), (a3, a4), (a4, a5), (a5, a6), (a6, a7), (a7, a8) }.
In each round, nearly half of these operations are operable and the number of operations will be
reduced by approximately half.

be finished in one round, since the lock mechanism disallows the element to interact with other

elements during its computing period. For a given list of operations a1 ⊕ a2 ⊕ . . . ⊕ az, as each

operation (ai, ai+1) needs to lock the small world [ai, ai+1] first, only half of these operations are

operable in each communication round. The number of operations is reduced by half at each round,

and the number of communication round required for computing all operations in a1⊕a2⊕ . . .⊕az

is b log(z), where b is a constant. An example for a given list can be seen in Figure 3.1. In graph

G(σ,A), multiple lists for a particular task exist, and the longest list is the maximum diameter

dmax of graph G(σ,A). The maximum number of communication round on processing ACT (A, σ)

is,

CommRound = b · log(dmax) (3.7)

The number of communication round in this case depends on the structure of graph G(σ,A).

In real applications, the number of computing nodes p is far less than the number of operation m

in σ. so equation (3.6) is used to analyze the running time.

As the computing time on processing ACT (A, σ) in a share memory machine is O(mH), the

speedup of using a cluster with p processors can be calculated with the following formula according

to equation (3.6),

Speedup =
pmH

rmS +zL + mH
(3.8)

Equation (3.6) and (3.8) can be used for analysis the performance of semigroup computation.

Parameters, such as F, H and m, are further determined by the problem itself. For example,

if an operation has constant number of computing time, here H = O(1), SWAP computational
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framework will linearly scale up with the increasing number of cores.

Appendix 4 — Complexity analysis of graph reduction

To analyze the complexity of graph reduction using the complexity results of SWAP computational

framework, the diameter dmax of graph G(σ,A) and total communication data volume z need to

be addressed first.

If the gaps, sequencing errors, and repeats are randomly distributed over the genome sequence

w, we have the following corollary according to Theorem 4 in [23],

Corollary 1. Given a reference genome sequence w with length g, if the percentage of k-molecules

in the area of gaps, errors, and repeats is q, then the sequence w can be broken into qw + 1

subsequences or contigs, and the length of the longest contigs Cmax satisfies Prob{Cmax > 3c ·
q log(g)} 6 1

gc , c > 2.

Corollary 1 shows that the length of longest contigs is bounded by 3c · q log(g) with high

probability, where c is a constant number and it varies for different species.

Graph G(σ,A) consists of a series of separated long lists of edges, and each list can be merged

into one contigs. The length of the longest list in graph G(σ,A) can be regarded as the diameter

of G(σ,A), which is bounded by 3cq · log(g). According to equation (3.7), when the number of

cores is closer or larger than the number of operations m, the maximum communication round on

computing edge merging operations is,

CommRound = b · log(3cq · log(g)) (4.1)

The total communication data volume is the same for a particular parallel job, independent of

the number of cores used. We can calculate the total communication volume for the case when the

number of cores is close or larger than the number of operations. In figure 8, every edge in 1-step

bi-directed graph carries a label about the edge and is initialized with one nucleotide. The label

on each edge is the main data transmitted by data messages. In each edge merging operation, only

two edges are merged into one, and the label length of the max length of new edges will be almost

doubled. The total data volume transmitted by data messages for all round can be calculated as

follows,

z =
CommRound∑

i=0

2i × n

2i
= b · log(3cq · log(g))× n (4.2)
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From Algorithm 4, the computation complexity of Operation function H is O(1). Combining

the equation (3.6), (20) and (21), we can obtain the running time of SWAP-Assembler in graph

reduction step as,

RunTime =
bnL log(3cq · log(g)) + rnS + n

p
(4.3)

With equations (20), (21) and (22), we can conclude that for each computing component the

graph reduction step has a computing complexity of O(n
p ), O(n log(log(g))

p ) communication volume,

and O(log(log(g))) communication round.
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